首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定理 设A’、B’、C’分别在△ABC的三边BC、CA、AB上,若AC’:C’B=p,BA’:A’C=q,C’B:B’A=r,△ABC与△A’B’C’的面积为S与S_0.则S_0/S=pqr 1/(p 1)(q 1)(r 1)证 设△AB’C’、△BA’C’、△CB’A’的面积分别为S_1、S_2、S_3、则  相似文献   

2.
已知△ABC,∠A、∠B、∠C所对的三条边分别记作a、b、c。今从三顶点A、B、C分别引对边的斜线AA_1、BB_1、CC_1,使得在保持同一顺序之下,有∠AA_1C=∠BB_1A=∠CC_1B=θ。则由三斜线AA_1、BB_1、CC_1相交所得的三角形△HJK称为原三角形△ABC的等斜角三角形。(图1) 定理1 设△HJK是△ABC的等斜角三角形,S_(△HJK)与S_(△ABC)分别表示△HJK与△ABC的面积,则有  相似文献   

3.
面积法证题     
利用图形的面积公式,求解或证明一类几何问题,有它的独到之处.应用这种方法几乎可以解决和证明所有的几何问题,用途十分广泛.可见讨论用面积方法在几何学中的应用是极其意义的.三角形的面积公式是求多边形面积的基础,目前所用到的主要公式并不多,主要有以下几个公式:(1)已知一底及高S_△=(1/2)ah_a=(1/2)ah_b=(1/2)ch_c(2)已知两底及夹角S_△=(1/2)absinC=(1/2)bcsinA=(1/2)casinB(3)已知三边S_△=(p(p-a)(p-b)(p-c))~(1/2) 其中p=(a b c)/2一、面积法证明成比例线段问题应用三角形面积公式,可以得到一系列结论:1.等底三角形面积比,等于对应高的比,当a=a',则S_(△ABC):S_(△A'B'C')=h_a:h_(a')2.等高三角形面积比,等于底的比,当h_a=h_(a'),则S_(△ABC):S_(△A'B'C')=BC:B'C'  相似文献   

4.
1993年德国有一赛题: 设△ABC三边AB=c,BC=a,CA=b,延长AB到A″,使BA″=a,反向延长到B′,使AB′=b,类似得A′,C′,B″,C″,如图,证明:S_(A′B″B′C″C′A″)/S_(△ABC)≥13。(*)  相似文献   

5.
性质 设△ABC的中线m_a、m_b、m_c构成△A'B'C',O、O'分别是△ABC和△A'B'C'内一点,且∠OAB=∠OBC=∠OCA=α,∠O'A'B'=∠O'B’C'=∠O'C'A’=α',那么α=α'。 证明 记△ABC和△A'B'C'的面积分别为△、△'。在△ABC中,由勃罗卡角等式及正、余弦定理,得ctgα=ctgA ctgB ctgC=cosA/sinA cosB/sinB cosC/sinC=(b~2 c~2-a~2)/(2bc sinA) (c~2 a~2-b~2)/(2ca sinB) (a~2 b~2-c~2)/(2ab sinC)=(a~2 b~2 c~2)/(4△)。在△A'B'C'中,同理可得ctgα'=(m_a~2 m_b~2 m_c~2)/(4△)。据熟知的结论,有 m_a~2 m_b~2 m_c~2=3/4(a~2 b~2 c~2), △'=(3/4)△, ∴ctgα=ctgα'。 又α、α'∈(0,π/2),故α=α'。  相似文献   

6.
求二面角的一般方法是根据定义找出二面角的平面角,然后通过论证计算求解,下面介绍一种较简捷的方法,即应用面积射影定理求解,可避免作、找、论证二面角的平面角.面积射影定理:若二面角M—a一N的大小为θ,在平面M内的一个三角形的面积为S,它在平面N上的射影面积为S′,则有:cosθ=S′/S.证:设平面M内的△ABC,且S_(△ABC)=S(1)若△ABC的边AB与交线a重合(如图1),设C在平面N上的射影为C′,则S_(△ABC′)=S′,在平面M内过C作CE(?)a于E,连C′E,则∠CEC′=θ,在Rt△CC′E中:C′E=CE·cosθ.∴cosθ=C′E/CE=(1/2C′E·AB)/(1/2CE·AB)=S′/S.(2)若△ABC的边AB∥平面N(如图2),则过AB作平面N′∥平面N,设C在平面N,N′内的射影分别为C′C″.A、B在平面N上的射影分别是A′、B′则△A′B′C′、△ABC″分别是△ABC在N、N′  相似文献   

7.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

8.
有这样一道立体几何题:平面a过△ABC的一边BC,△ABC是△ABC在a内的射影,二面角A-BC-A′=(如图1).求证:S_(△ABC)=S_(△ABC)·cos证明:过A在△ABC中作AD⊥BC交BC于D∵AA′⊥平面a,由三垂线定理逆定理有A′D⊥BC,∴∠ADA′为二面角A-BC-A′的平面角,即∠ADA′=∴A′D=  相似文献   

9.
本文介绍三角形分角线长的一个公式,并举例说明它在数学竞赛解题中的广泛应用。目的在于启发学生的解题思路,培养其创造性思维能力。定理△ABC的顶点A、B、C所对的边分别为a、b、c,D是边C上任一点,CD分∠C为α、β,则 CD=absin(α β)/asinα bsinβ证明;如图, ∵ S_(△BCD) S_(△ACD)=S_(△ABC), ∴ 1/2a·CDsinα 1/2b·CDsinβ =1/2absin(α β),  相似文献   

10.
命题:△ABC的外接圆半径R与内切圆半径间成立不等式:R≥2r。证:(见原文图)过△ABC的顶点作对边的平行线,三直线围成△A′B′C′,则△ABC∽△A′B′C′,K=AB/A′B′=1/2。作外接圆的三条切线,分别平行于△A′B′C′的三边,围成△A″B″C″,(使△ABC的外接圆在为△A″B″C″的内切圆),△ABC∽△A″B″C″、  相似文献   

11.
三点共线定理是指:如图1,若∠BAD=α,∠CAD=β,AB=a,AC=b,AD=m,那么,B、D、C三点共线的充要条件是。 sin(α+β)/m=sinβ/a+sinα/b。证明:∵B、D、′C三点共线的充要条件是 S_(△ABC)=S_(△ABD)+S_(△ADC)(?)1/2ab sin(α+β) =1/2am sinα+1/2bm sinβ(?)sin(α+β)/m =sinβ/a+sinα/b。证毕。有些几何问题采用上述定理求解,大有以简驭繁,化难为易,新颖轻巧,别有奇妙之效。下面试举  相似文献   

12.
设A_1,B_1,C_1分别是△ABC中BC,CA,AB边上的任意点,则你△A_1B_1C_1为△ABC的内接三角形。本文中记△ABC的面积为S,AB=c,BC=a,CA=b,内切圆半径为r,三旁切圆半径为r_a,r_b,r_c;AC_1/C_1B=m,BA_1/A_1C=n,CB_1/B_1A=l,△AC_1B_1,△BA_1C_1,△CB_1A_1,△A_1B_1C_1的面积分别为S_1,S_2,S_3,S′。则有。定理、△ABC的面积S与其内接△A_1B_1C_1面积S′有如下关系式:S′=(1+mnl)/((1+m)(1+n)(1+l))S其中AC_1/C_1B=m,CB_1/B_1A=l,BA_1/A_1C=n。  相似文献   

13.
一、求值例1 在△ABC中,已知tanA,tanB是方程3x2+8x- 1=0的两根,求tanC的值. 解由韦达定理得∵A+B+C=180°∴C=180°-(A+B). ∴tanC=tan[180°-(A+B)]=-tan(A+B)=-(-2)=2. 例2 已知△ABC的三个内角满足:2B=A+C,  相似文献   

14.
<正>在直角坐标系中,△ABC的顶点A(x_A,y_A),B(x_B,y_B),C(x_C,y_C),过点A作l∥y轴,交BC所在直线于点D,设D(x_D,y_D),则S_(△ABC)=1/2|y_A-y_D|·|x_C-x_B|.下面我们来证明这个公式.当△ABC位置如图1时,过C作CF⊥l,过B作BE⊥l,垂足分别为F,E,所以x_D=x_E=x_F,有AD=y_A-y_D,CF=x_C-x_D,BE=x_D-x_B,所以S_(△ABC)=S_(△ABD)+  相似文献   

15.
两直角三角形相似的判定定理,课本上是这样证明的:先在△ABC中作一个与△A'B'C'相似的三角形,再证明这两个三角形全等。对于这个定理的证明,尽管有三个判定定理的证明作基础,但学生还是普遍反映,对这种证法感到突然。我在教学中,根据学生的心理特点,介绍了如下证法:  相似文献   

16.
5.9正弦定理、余弦定理教材细解1.正弦定理(1)正弦定理:在△ABC中,a、b、c分别为角A、B、C的对边,R为△ABC的外接圆的半径,则有asinA=sibnB=sincC=2R.(2)正弦定理的证明:①向量法:先选定与其中  相似文献   

17.
我们知道,在△ABC中,若A,B,C为三角形的三内角,则有: sinA sinB sinC≤3(3~(1/2))/2=3sinπ/3。 本短文将利用平几知识,给出如下推广: 定理 在△ABC中,若A,B,C为三角形的内角,则有:  相似文献   

18.
定理:已知△ABC中,必存在一个锐角三角形△A′B′C′,使满足2A′ A=π,2B′ B=π, 2C′ C=π.  相似文献   

19.
定理 在△ABC三边BC、CA、AB所在的有向直线上各取分点A'、B'、C'。 此定理所包含的图象关系非常丰富,下面的图1、2、3、4、5列出了其中的几种情形。  相似文献   

20.
题在△ABC及△A’B’C’中,已知AB=A’B’=c,BC及B’C’边中线ma=ma',∠B及∠B'平分线长tb=tb'两三角形是否全等?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号