首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the influence of a professional development program based around commercially available inquiry science curricula on the teaching practices of 27 beginning elementary school teachers and their teacher mentors over a 2 year period. A quantitative rubric used to score inquiry elements and use of data in videotaped lessons indicated that education students assigned to inquiry-based classrooms during their methods course or student teaching year outperformed students without this experience. There was also a significant positive effect of multi-year access to the kit-based program on mentor teaching practice. Recent inclusion of a “writing in science” program in both preservice and inservice training has been used to address the lesson element that received lowest scores—evaluation of data and its use in scientific explanation.  相似文献   

2.
This study reports the learning of elementary preservice teachers regarding diversity and teaching science in diverse urban elementary classrooms. From participating in a semester-long book club, the preservice teachers reveal their cultural biases, connect and apply their knowledge of diversity, and understand that getting to know their students are important elements for teaching science in diverse classrooms. These 3 things connect in ways that allow the preservice teachers to understand how their cultural biases impede student learning and gain new knowledge of diversity as they change their cultural biases. Implications of this study reveal that preservice teachers need opportunities to reveal, confront, challenge, and change their cultural models and to develop new models for teaching science in urban elementary classrooms.
Felicia M. MooreEmail:
  相似文献   

3.
Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs about the teaching and learning of science through structured inquiry. Supportive dispositions included curiosity and questioning, investigating first-hand, learning together, and active learning. These dispositions supported early science teaching despite candidates limited science content knowledge, and may contribute to candidates’ further learning of science.  相似文献   

4.
5.
We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.  相似文献   

6.
7.
Undergraduate college “science partners” provided content knowledge and a supportive atmosphere for K–5 teachers in a university–school professional development partnership program in science instruction. The Elementary Science Education Partners program, a Local Systemic Change initiative supported by the National Science Foundation, was composed of four major elements: 1) a cadre of mentor teachers trained to provide district-wide teacher professional development; 2) a recruitment and training effort to place college students in classrooms as science partners in semester-long partnerships with teachers; 3) a teacher empowerment effort termed “participatory reform”; and 4) an inquiry-based curriculum with a kit distribution and refurbishment center. The main goals of the program were to provide college science students with an intensive teaching experience and to enhance teachers'' skills in inquiry-based science instruction. Here, we describe some of the program''s successes and challenges, focusing primarily on the impact on the classroom teachers and their science partners. Qualitative analyses of data collected from participants indicate that 1) teachers expressed greater self-confidence about teaching science than before the program and they spent more class time on the subject; and 2) the college students modified deficit-model negative assumptions about the children''s science learning abilities to express more mature, positive views.  相似文献   

8.
The teacher as researcher, Colburn, and the researcher, Bianchini, investigated Colburn's use of inquiry to teach the nature of science to prospective elementary teachers; we attempted to identify those aspects of the nature of science addressed through inquiry instruction and the varied contexts in which such insights arose. We began by videotaping small group inquiries and whole class deliberations during three units of Colburn's inquiry‐oriented general science course. We then conducted separate qualitative analyses of the resulting 20 h of videotaped data. Colburn, the teacher and informant, adopted an emic perspective and employed examples of explicit and implicit deliberations and demonstrations of the nature of science to construct his case. Bianchini also used an emic perspective, but examined only what teacher and students explicitly identified as examples of and insights into the nature of science. Taken together, our analyses highlight the difficulties in presenting a cogent and comprehensive picture of the nature of science to students, the teacher's pivotal role in initiating discussions of what science is and how scientists work, and the strengths and limitations of using classroom‐based research to investigate nature of science instruction. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 177–209, 2000  相似文献   

9.
This study examined changes in personal science teaching self-efficacy (PSTE), outcome expectancy (STOE), and science conceptual understanding and relationships among these in preservice teachers. Seventy preservice teachers enrolled in science teaching methods courses participated in this study. PSTE, STOE, and science conceptual understanding increased significantly during participation in the course. The study established that novice learners with minimal prior knowledge could not be expected to understand and employ core concepts in their learning schema without extensive guidance. The relationship between science learning confidence and science teaching confidence has not been theoretically delineated in the area of science teacher education. Findings suggest there may be important connections between the 2 for preservice teachers that would be fruitful areas for future research.  相似文献   

10.
The purpose of this study was to examine changes in personal science teaching self-efficacy (PSTE), outcome expectancy (STOE), and science conceptual understanding and relationships among these in preservice teachers. Seventy preservice teachers enrolled in science teaching methods courses participated in this study. PSTE, STOE, and science conceptual understanding increased significantly during participation in the course. The study established that novice learners with minimal prior knowledge couldn't be expected to understand and employ core concepts in their learning schema without extensive guidance. The relationship between science learning confidence and science teaching confidence has not been theoretically delineated in the area of science teacher education. Findings suggest that there may be important connections between the two for preservice teachers that would be fruitful areas for future research.  相似文献   

11.
12.
Beginning Elementary Teachers' Development as Teachers of Science   总被引:1,自引:0,他引:1  
Journal of Science Teacher Education -  相似文献   

13.
Establishing literacy in science is often linked to building knowledge about the Nature of Science (NOS). This paper describes and evaluates an inservice program designed to build elementary teachers’ understanding of NOS and an awareness of how NOS impacts science classroom instruction. Data sources consisted of surveys, action research plan documentation and classroom observations. Program participants tended to demonstrate some gains in understanding more about NOS and they linked positive experiences in the program to the explicit and activity-based NOS instruction provided. Yet, participation in the professional development project might not have been equally beneficial for all teachers. The understanding of NOS may have been restricted to certain NOS aspects, and the demonstration of the participants’ understanding of NOS may have been short-lived with a somewhat limited impact on sustainable, long-term NOS-based classroom instruction. Implications for designing NOS related professional development programs and suggestions for improvements to further develop teacher understanding of NOS are discussed.  相似文献   

14.
The purpose of this study was to describe how three primary teachers attempted to overcome incomplete content knowledge when teaching an astronomy unit. Daily observations of science activities were videotaped and transcribed from each classroom to determine the influences on the changes in teacher and student ideas of astronomy. Teachers' ideas were triggered toward the more scientific by classroom interactions. Influences on the experienced teachers' ideas were questions raised by the students, or conceptions students held of the content. Experienced teachers planned to elicit and address student ideas, and so were triggered to improve their understanding of the astronomy.  相似文献   

15.
16.
This paper is an initial investigation into the practice of providers of professional development for teachers of mathematics. The study examines the work of two providers of professional development for teachers of mathematics. Both provided professional development while working with teachers on implementing a new mathematics curriculum for seventh grade. Although their work conditions were quite different from each other the study reveals that there were similar characteristics in their practices. The most salient ones were acting out lessons, analyzing principles of the new curriculum, encouraging the teachers to explicate their concerns, and asking teachers to solve concrete practical problems related to the reservations they have about specific components of the new curriculum. The role of a program that prepared the two participants to be providers of professional development for teachers is also discussed.  相似文献   

17.
基于个案研究,教师教学反思基本而实用的普适方法有两种,即在预设与生成的冲突中反思,以提高教学设计的科学性和实效性;在教科书重组中反思,以提高教师使用教科书的水平,实现课程实施的高质量。在精心预设的前提下,教师只有牢记课堂教学目标达成的需要和学生发展的实际需要,因势利导,顺势而为,才有可能精彩生成;对于后者,需要教师具备一定的批判意识(特别是教科书评判能力),同时,往往需要同伴互助与专业引领的同步支持。  相似文献   

18.
This study examines the effectiveness of a new constructivist curriculum model (Powerful Ideas in Physical Science) in improving prospective teachers’ understanding of science concepts, in fostering a learning environment supporting conceptual understanding, and in promoting positive attitudes toward learning and teaching science and chemistry in particular. A non‐equivalent pretest–post‐test control‐group design was employed. Analysis of covariance and repeated‐measures analyses of variance were performed to analyze the scores on concept tests and attitude surveys. Data from videotaped observations of laboratory sessions and interviews of prospective teachers were analyzed by employing a naturalistic inquiry method to provide insights into the process of science learning and teaching for the teacher trainees. The interpretations were made based on the findings that could be corroborated by both methodologies. Conclusions and limitations of the present study as well as recommendations for future implementation of constructivist science curriculum in general are also included.  相似文献   

19.
Elementary teachers are typically hesitant to teach science. While a limited knowledge of science content is a reason for this, limited science pedagogical content knowledge (PCK) has emerged as another reason in recent research. This study constitutes two case studies of a professional development program for elementary teachers involving mentoring by a university professor. The mentor took the role of a critical friend in joint planning and teaching of science. The study examines the nature of the mentoring relationship and reports the type of teacher learning that occurred, with a particular focus on the teachers’ development of science PCK.
Ken AppletonEmail:
  相似文献   

20.
In this article, we present the results from a mixed-methods research study aimed to document indoor and outdoor fifth grade science experiences in one school in the USA in the context of accountability and standardized testing. We used quantitative measures to explore students’ science knowledge, environmental attitudes, and outdoor comfort levels, and via qualitative measures, we examined views on science education and environmental issues from multiple sources, including the school’s principal, teachers, and students. Students’ science knowledge in each of the four objectives specified for grade 5 significantly improved during the school year. Qualitative data collected through interviews and observations found limited impressions of outdoor science. Findings revealed that, despite best intentions and a school culture that supported outdoor learning, it was very difficult in practice for teachers to supplement their classroom science instruction with outdoor activities. They felt constrained by time and heavy content demands and decided that the most efficient way of delivering science instruction was through traditional methods. Researchers discuss potentials and obstacles for the science community to consider in supporting teachers and preparing elementary school teachers to provide students with authentic experiential learning opportunities. We further confront teachers’ and students’ perceptions that science is always best and most efficiently learned inside the classroom through traditional text-driven instruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号