首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Braiding is not currently used in the production of golf shafts. The objective of this work was to develop, through a modelling process consisting of altering lamina sequence, a golf shaft, using braided laminas, which would have mass, stiffness and torque comparable to commercially available composite and steel shafts. A 2D conical braided composite model was previously developed and validated to predict elastic constants of braided closed meshed structures. Energy methods were used to calculate the stiffness and torque of shafts using prescribed industry approaches. Shaft mass was calculated based on geometry and density of constitutent materials. Modelled shafts had both braided and unidirectional layers and compared favourably with or were better than commercially available composite and steel shafts in terms of deflection force and twist angle; they had the same weight as composite shafts but were much lighter than steel shafts. If these findings are verified, braided composites would be a viable and effective approach to the design of future golf shafts.  相似文献   

2.
The purpose of this study was to investigate the influence of shaft stiffness on grip and clubhead kinematics. Two driver shafts with disparate levels of stiffness, but very similar inertial properties, were tested by 33 golfers representing a range of abilities. Shaft deflection data as well as grip and clubhead kinematics were collected from 14 swings, with each shaft, for each golfer using an optical motion capture system. The more flexible shaft (R-Flex) demonstrated a higher contribution to clubhead speed from shaft deflection dynamics (P < .001), but was also associated with significantly less grip angular velocity at impact (P = .001), resulting in no significant difference in clubhead speed (P = .14). However, at the individual level, half of the participants demonstrated a significant difference in clubhead speed between shafts. The more flexible shaft was also associated with significantly different magnitudes of head rotation relative to the grip. More specifically, both bend loft (P < .001) and bend lie (P < .001) were greater for the R-Flex shaft, while bend close (P = .017) was greater for the stiffer (X-Flex) shaft. However, changes in grip orientation resulted in no significant differences in face orientation, between the shafts, at impact.  相似文献   

3.
The role of shaft stiffness on the golf swing is not well understood. Studies in which golfers hit balls with clubs of varying shaft flex have reported changes in ball distance. The results of mathematical models suggest that shaft stiffness affects only the orientation of the clubhead at impact, not the speed of the clubhead, but there are no experimental results validating these findings. The purpose of this study was therefore to experimentally examine the influence of shaft stiffness on clubhead kinematics at ball impact. Forty golfers hit 10 balls with each of five drivers varying in shaft stiffness from 'Ladies' to 'Extra-Stiff', in a double-blind study design. The motions of three reflective markers attached to the clubhead were captured with a high-speed motion analysis system. At ball impact, shaft stiffness had a statistically significant influence on clubhead speed for 27 subjects, on loft angle for 11 subjects, and on lie angle for all 40 subjects. No effect was observed on face angle, in to out path angle, or attack angle. These results show that shaft stiffness can affect ball launch conditions by altering clubhead speed and/or loft angle.  相似文献   

4.
Theoretically, shaft stiffness can alter shot distance by increasing clubhead speed or altering clubhead orientation at impact. A 3D forward dynamics model of a golfer and flexible club simulated the downswing. A genetic algorithm optimized the coordination of the model’s muscles (four torque generators) to maximize clubhead speed. The maximum torque output and maximum rate of torque development from the torque generators were varied to simulate the swing of golfers that generate different clubhead speeds. Four shafts of varying stiffness (flexible, regular, stiff, and completely rigid) were entered into these simulations to examine the role that shaft flexibility had on clubhead speed and orientation at impact. Shaft stiffness was found to have a meaningful effect only on clubhead orientation (dynamic loft and dynamic close) at impact. There was no evidence to support the premise that matching the stiffness properties of the shaft with the golfer would improve clubhead speed.  相似文献   

5.
The aim of this study was to quantify and explain the effect of shaft stiffness on the dynamics of golf drives. Twenty golfers performed swings with two clubs designed to differ only in shaft bending stiffness. Wrist kinematics and clubhead presentation to the ball were determined using optical motion capture systems in conjunction with a radar device for capturing ball speed, launch angle, and spin. Shaft stiffness had a marginally small effect on clubhead and ball speeds, which increased by 0.45% (p < 0.001) and 0.7% (p = 0.008), respectively, for the less stiff club. Two factors directly contributed to these increases: (i) a faster recovery of the lower flex shaft from lag to lead bending just before impact (p < 0.001); and (ii) an increase of 0.4% in angular velocity of the grip of the lower flex club at impact (p = 0.003). Unsurprisingly, decreases in shaft stiffness led to more shaft bending at the transition from backswing to downswing (p < 0.001). Contrary to previous research, lead bending at impact marginally increased for the stiffer shaft (p = 0.003). Overall, and taking effect sizes into account, the changes in shaft stiffness in isolation did not have a meaningful effect on the measured parameters, for the type of shaft investigated.  相似文献   

6.
7.
Abstract

The aim of this study was to investigate the convergent and predictive validity of two skill tests that examine the ability of golfers to hit accurate approach-iron shots. Twenty-four high-level golfers (handicap = 2.6 ± 1.7) performed the Nine-Ball Skills Test (assesses the ability to shape/control ball trajectory with high accuracy) and the Approach-Iron Skill Test (assesses the ability to hit straight shots from varying distances with high accuracy). Participants then completed at least eight rounds of tournament golf over the following 90 days and reported an indicator of approach-iron accuracy (per cent error index). A moderate correlation (r = 0.50, P < 0.05) was noted between scores for both tests. Generalised estimating equations, using two covariates (lie of the ball and distance to hole), were used to determine model fit and the amount of variance explained for tournament per cent error index. Results showed that the Approach-Iron Skill Test was the slightly stronger predictor of on-course per cent error index. With both test scores considered together, a minimal amount of additional variance was explained. These findings suggest that either of the tests used individually or combined may be used to predict tournament approach iron performance in high-level golfers.  相似文献   

8.
Purpose: Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. Methods: The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n?=?11; mean age: 48.6?±?2.8 years) or a half-intervention that included a control period (n?=?11; mean age: 46.9?±?3.6 years). Results: Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. Conclusion: A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.  相似文献   

9.
In golf, unlike most other sports, individual performance is not the result of direct interactions between players. Instead decision-making and performance is influenced by numerous constraining factors affecting each shot. This study looked at the performance of PGA TOUR golfers in 2011 in terms of stability and variability on a shot-by-shot basis. Stability and variability were assessed using Recurrence Quantification Analysis (RQA) and standard deviation, respectively. About 10% of all shots comprised short stable phases of performance (3.7 ± 1.1 shots per stable phase). Stable phases tended to consist of shots of typical performance, rather than poor or exceptional shots; this finding was consistent for all shot categories. Overall, stability measures were not correlated with tournament performance. Variability across all shots was not related to tournament performance; however, variability in tee shots and short approach shots was higher than for other shot categories. Furthermore, tee shot variability was related to tournament standing: decreased variability was associated with better tournament ranking. The findings in this study showed that PGA TOUR golf performance is chaotic. Further research on amateur golf performance is required to determine whether the structure of amateur golf performance is universal.  相似文献   

10.
A 3D predictive golfer model can be a valuable tool for investigating the golf swing and designing new clubs. A forward dynamic model, which includes a four degree of freedom golfer model, a flexible shaft based on Rayleigh beam theory, an impulse-momentum impact model and a spin rate dependent aerodynamic ball model, is presented. The input torques for the golfer model are provided by parameterized joint torque generators that have been designed to mimic muscle torque production. These joint torques are optimized to create swings and launch conditions that maximize carry distance. The flexible shaft model allows for continuous bending in the transverse directions, axial twisting of the club and variable shaft stiffness as a function of the length. The completed four-part model with the default parameters is used to estimate the ball carry of a golf swing using a particular club. This model will be useful for experimenting with club design parameters to predict their effect on the ball trajectory and carry distance.  相似文献   

11.
In this paper, we report the discrete frequencies at which golf balls can vibrate, the mode patterns of these vibrations and how these modes can be excited. There are two broad classes of modes: those that radiate sound waves and those that do not. Both silent and acoustic modes are excited by tangential (i.e. spin-producing) impact forces; only acoustic modes are excited by radial impact forces. Exact analytical results for a homogeneous ball core are compared with finite element numerical results for both a core and a model two-piece ball. Correspondences are readily established for the important low-frequency modes, and the good agreement suggests the validity of these results for real golf balls. The results potentially provide the basis for a rapid, simple and non-destructive method of measuring the effective high-frequency elastic shear modulae of balls (and ball cores) as well as a method for 'tuning' the performance of balls for specific clubs. Some of these aspects are explored further in our companion paper in this issue.  相似文献   

12.
In this paper, we report the discrete frequencies at which golf balls can vibrate, the mode patterns of these vibrations and how these modes can be excited. There are two broad classes of modes: those that radiate sound waves and those that do not. Both silent and acoustic modes are excited by tangential (i.e. spin-producing) impact forces; only acoustic modes are excited by radial impact forces. Exact analytical results for a homogeneous ball core are compared with finite element numerical results for both a core and a model two-piece ball. Correspondences are readily established for the important low-frequency modes, and the good agreement suggests the validity of these results for real golf balls. The results potentially provide the basis for a rapid, simple and non-destructive method of measuring the effective high-frequency elastic shear modulae of balls (and ball cores) as well as a method for 'tuning' the performance of balls for specific clubs. Some of these aspects are explored further in our companion paper in this issue.  相似文献   

13.
Abstract

Researchers have suggested that skill performance deteriorates when people try to exert conscious control over automatic actions. Unfortunately, little is known about the effects of different types of conscious processing on skilled performance by expert athletes. We conducted two experiments to address this issue. Experiment 1 investigated the influence of a specific form of conscious control (making technical adjustments to a stroke) on the putting skills of expert golfers. The expert golfers maintained putting proficiency (i.e. number of putts holed) when making technical adjustments. However, this form of conscious processing altered the timing and consistency of golfers' putting strokes. Experiment 2 compared the influence of technical adjustments and conscious monitoring (paying attention to the execution of the stroke) on expert golfers' putting skills. Technical adjustments had no disruptive influence on expert golfers' putting proficiency but did reduce the consistency of their strokes. However, conscious monitoring was found to impair putting proficiency. The implications of the work for theory and future work are discussed.  相似文献   

14.
Researchers have suggested that skill performance deteriorates when people try to exert conscious control over automatic actions. Unfortunately, little is known about the effects of different types of conscious processing on skilled performance by expert athletes. We conducted two experiments to address this issue. Experiment 1 investigated the influence of a specific form of conscious control (making technical adjustments to a stroke) on the putting skills of expert golfers. The expert golfers maintained putting proficiency (i.e. number of putts holed) when making technical adjustments. However, this form of conscious processing altered the timing and consistency of golfers' putting strokes. Experiment 2 compared the influence of technical adjustments and conscious monitoring (paying attention to the execution of the stroke) on expert golfers' putting skills. Technical adjustments had no disruptive influence on expert golfers' putting proficiency but did reduce the consistency of their strokes. However, conscious monitoring was found to impair putting proficiency. The implications of the work for theory and future work are discussed.  相似文献   

15.
The aim of this article is to characterise the extent to which the dynamic behaviour of a tennis racket is dependent on its mechanical characteristics and the modulation of the player’s grip force. This problem is addressed through steps involving both experiment and modelling. The first step was a free boundary condition modal analysis on five commercial rackets. Operational modal analyses were carried out under “slight”, “medium” and “strong” grip force conditions. Modal frequencies and damping factors were then obtained using a high-resolution method. Results indicated that the dynamic behaviour of a racket is not only determined by its mechanical characteristics, but is also highly dependent on the player’s grip force. Depending on the grip force intensity, the first two bending modes and the first torsional mode frequencies respectively decreased and increased while damping factors increased. The second step considered the design of a phenomenological hand-gripped racket model. This model is fruitful in that it easily predicts the potential variations in a racket’s dynamic behaviour according to the player’s grip force. These results provide a new perspective on the player/racket interaction optimisation by revealing how grip force can drive racket dynamic behaviour, and hence underlining the necessity of taking the player into account in the racket design process.  相似文献   

16.
The main aim of this study was to assess the separate and combined effects of exercise and nasal splinting on static and dynamic measures of nasal airflow. In a randomized crossover design, 12 healthy participants (6 men, 6 women) performed static and dynamic spirometric nasal airflow assessment tests, with or without nasal splinting (Breathe-Right), before and after a maximal oxygen uptake (VO2max) treadmill test. At least 7 days later, the VO2max, and nasal airflow tests were repeated. The results showed that the measured variables were not significantly different with and without nasal splinting. We conclude that the absence of significantly enhanced nasal patency observed for nasal splinting and after exercise suggest that these factors have a minimal impact on nasal airflow volume and rate.  相似文献   

17.
The main aim of this study was to assess the separate and combined effects of exercise and nasal splinting on static and dynamic measures of nasal airflow. In a randomized crossover design, 12 healthy participants (6 men, 6 women) performed static and dynamic spirometric nasal airflow assessment tests, with or without nasal splinting (Breathe-Right?), before and after a maximal oxygen uptake (VO 2max ) treadmill test. At least 7 days later, the V O 2max and nasal airflow tests were repeated. The results showed that the measured variables were not significantly different with and without nasal splinting. We conclude that the absence of significantly enhanced nasal patency observed for nasal splinting and after exercise suggest that these factors have a minimal impact on nasal airflow volume and rate.  相似文献   

18.
Transverse plane rotations of the upper body are often estimated during the golf swing. The aim of this study was to determine the agreement between upper body alignments measured using markers attached to the thorax and markers on the acromion process during the golf drive. Three-dimensional coordinate data from nine markers were collected (300 Hz) during eight golf drives for 10 participants. The transverse plane alignment of the upper body was calculated using three techniques: inter-acromion vector, thorax vector, and Cardan angles. Agreement between the methods was then assessed using intra-class correlation and 95% limits of agreement. Our results suggested that the thorax vector can be used to provide an accurate estimation of thorax alignment at all stages of the golf swing (R > or = 0.97, systematic difference < 1.0 degrees , random difference < 3.8 degrees ). The inter-acromion vector gave an accurate estimation of thorax alignment at address (R = 0.90, systematic difference = 0.0 degrees , random difference = 4.3 degrees ) but it should not be used to estimate thorax alignment at the top of the backswing (R = 0.32, systematic difference = -16.0 degrees , random difference = 8.7 degrees ) or impact (R = 0.90, systematic difference = -5.1 degrees , random difference = 8.3 degrees ) during the golf drive.  相似文献   

19.
ABSTRACT

The purpose of this study was to investigate the influence of shaft torque (torsional rigidity) on clubhead kinematics and the resulting flight of the ball. Two driver shafts with disparate levels of torque, but otherwise very similar properties, were tested by 40 right-handed golfers representing a range of abilities. Shaft deflection data as well as grip and clubhead kinematics were collected from 14 swings, with each shaft, for each golfer using an optical motion capture system. Ball flight and additional clubhead kinematics were collected using a Doppler radar launch monitor. At impact, the high torque shaft (HT) was associated with increased delivered loft (P = .028) and a more open face (P < .001) relative to the low torque shaft (LT). This resulted in the HT shaft being associated with a ball finishing position that was further right (P = .002). At the individual level, the change in face angle due solely to shaft deformation was significantly higher for the HT shaft for 25/40 participants. Although shaft twist was not directly measured, it was logically deduced using the collected data that these outcomes were the result of the HT being twisted more open relative to the LT shaft at impact.  相似文献   

20.
This study was designed to examine the efficacy of video instruction relative to that of verbal and self-guided instruction. Before training, 30 golfers were assigned at random to one of three groups: video, verbal or selfguided instruction. Video instruction was defined as a practice session in which the teacher was aided by the use of video. Verbal instruction was defined as practising with the teacher providing verbal feedback. Self-guided practice was defined as practising without the aid of a teacher. The participants had a pre-test, four 90 min practice sessions, an immediate post-test and a 2 week delayed post-test. During the pre-test and post-tests, all participants were required to strike 15 golf balls, with a 7-iron, from an artificial turf mat for distance and accuracy. The results showed that all groups were equal on the pre-test. On the first post-test, the two instruction groups performed worse than the self-guided group. However, on the second post-test, the two instruction groups performed better than the self-guided group, with the video group performing best. We interpret these results to mean that video analysis is an effective means of practice, but that the positive effects may take some time to develop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号