首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Abstract

We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

2.
We tested the hypothesis that variability in the timing of ball release in overarm throws affects ball speed. Nine unskilled and six skilled throwers made 30 throws fast and accurately from a sitting and standing position. Angular positions of finger and arm segments were recorded with search-coils at 1000 Hz; ball speed was measured with a radar gun. The time of ball release from the fingertips was measured with respect to seven arm kinematic reference points. Mean timing windows for ball release were 28?ms for unskilled throwers and 7?ms for skilled throwers. Mixed-model analyses of variance showed that a there was a statistically significant relationship between ball speed and the timing of ball release in unskilled throwers, but not in skilled throwers. This was presumably due to the difference in variability of the timing of ball release between the two groups. In contrast, skilled throwers showed a relationship between ball speed and peak forearm angular velocity (one measure of arm speed). We conclude that although variability in the timing of ball release can affect ball speed, this is only a major factor in unskilled throwers. When skilled throwers throw fast, variability in ball speed is due to variability in arm speed.  相似文献   

3.
We tested the hypothesis that variability in the timing of ball release in overarm throws affects ball speed. Nine unskilled and six skilled throwers made 30 throws fast and accurately from a sitting and standing position. Angular positions of finger and arm segments were recorded with search-coils at 1000 Hz; ball speed was measured with a radar gun. The time of ball release from the fingertips was measured with respect to seven arm kinematic reference points. Mean timing windows for ball release were 28 ms for unskilled throwers and 7 ms for skilled throwers. Mixed-model analyses of variance showed that a there was a statistically significant relationship between ball speed and the timing of ball release in unskilled throwers, but not in skilled throwers. This was presumably due to the difference in variability of the timing of ball release between the two groups. In contrast, skilled throwers showed a relationship between ball speed and peak forearm angular velocity (one measure of arm speed). We conclude that although variability in the timing of ball release can affect ball speed, this is only a major factor in unskilled throwers. When skilled throwers throw fast, variability in ball speed is due to variability in arm speed.  相似文献   

4.
Joint angles of the throwing limb were examined from the acceleration phase up until release for the sidearm throwing motion when using a flying disc. 17 individuals (ten skilled, seven unskilled) threw a disc as far as possible ten times. Throwing motions were recorded using three-dimensional high-speed videography. The initial condition of disc release and joint angle kinematics of the upper limb during the throwing motion were obtained. Mean (+/- standard deviation) throwing distance and disc spin rate were significantly greater for skilled throwers (51.4 +/- 6.6 m, 12.9 +/- 1.3 rps) than for unskilled throwers (29.5 +/- 7.6 m, 9.4 +/- 1.3 rps), although there was no significant difference in initial velocity of the disc between the two groups (skilled: 21.7 +/- 1.7m/s; unskilled: 20.7 +/- 2.5m/s). A marked difference in motion of supination/pronation of the forearm before disc release was identified, with the forearm supinated in the final acceleration phase leading up to disc release for the unskilled participants, while the forearm was pronated in the same phase for the skilled participants. These differences in joint kinematics could be related to differences in disc spin rate, and thus led to the substantial differences in throwing distance.  相似文献   

5.
Joint angles of the throwing limb were examined from the acceleration phase up until release for the sidearm throwing motion when using a flying disc. 17 individuals (ten skilled, seven unskilled) threw a disc as far as possible ten times. Throwing motions were recorded using three-dimensional high-speed videography. The initial condition of disc release and joint angle kinematics of the upper limb during the throwing motion were obtained. Mean ( ± standard deviation) throwing distance and disc spin rate were significantly greater for skilled throwers (51.4 ± 6.6 m, 12.9 ± 1.3 rps) than for unskilled throwers (29.5 ± 7.6 m, 9.4 ± 1.3 rps), although there was no significant difference in initial velocity of the disc between the two groups (skilled: 21.7 ± 1.7 m/s; unskilled: 20.7 ± 2.5 m/s). A marked difference in motion of supination/pronation of the forearm before disc release was identified, with the forearm supinated in the final acceleration phase leading up to disc release for the unskilled participants, while the forearm was pronated in the same phase for the skilled participants. These differences in joint kinematics could be related to differences in disc spin rate, and thus led to the substantial differences in throwing distance.  相似文献   

6.
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three-dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.  相似文献   

7.
Baseball     
The purpose of this study was to quantify and compare kinematic, temporal, and kinetic characteristics of American and Korean professional pitchers in order to investigate differences in pitching mechanics, performance, and injury risks among two different cultures and populations of baseball pitchers. Eleven American and eight Korean healthy professional baseball pitchers threw multiple fastball pitches off an indoor throwing mound positioned at regulation distance from home plate. A Motion Analysis three‐dimensional automatic digitizing system was used to collect 200 Hz video data from four electronically synchronized cameras. Twenty kinematic, six temporal, and 11 kinetic variables were analyzed at lead foot contact, during the arm cocking and arm acceleration phases, at ball release, and during the arm deceleration phase. A radar gun was used to quantify ball velocity. At lead foot contact, the American pitchers had significantly greater horizontal abduction of the throwing shoulder, while Korean pitchers exhibited significantly greater abduction and external rotation of the throwing shoulder. During arm cocking, the American pitchers displayed significantly greater maximum shoulder external rotation and maximum pelvis angular velocity. At the instant of ball release, the American pitchers had significantly greater forward trunk tilt and ball velocity and significantly less knee flexion, which help explain why the American pitchers had 10% greater ball velocity compared to the Korean pitchers. The American pitchers had significantly greater maximum shoulder internal rotation torque and maximum elbow varus torque during arm cocking, significantly greater elbow flexion torque during arm acceleration, and significantly greater shoulder and elbow proximal forces during arm deceleration. While greater shoulder and elbow forces and torques generated in the American pitchers helped generate greater ball velocity for the American group, these greater kinetics may predispose this group to a higher risk of shoulder and elbow injuries.  相似文献   

8.
The purpose of this study was to investigate joint kinetics of the throwing arms and role of trunk motion in skilled elementary school boys during an overarm distance throw. Throwing motions of 42 boys from second, fourth, and sixth grade were videotaped with three high-speed cameras operating at 300 fps. Seven skilled boys from each grade were selected on the basis of throwing distance for three-dimensional kinetic analysis. Joint forces, torques, and torque powers of the throwing arm joints were calculated from reconstructed three-dimensional coordinate data smoothed at cut-off frequencies of 10.5–15 Hz and by the inverse dynamics method. Throwing distance and ball velocity significantly increased with school grade. The angular velocity of elbow extension before ball release increased with school grade, although no significant increase between the grades was observed in peak extension torque of elbow joint. The joint torque power of shoulder internal/external rotation tended to increase with school grade. When teaching the overarm throw, elementary school teachers should observe large backward twisting of trunk during the striding phase and should keep in mind that young children, such as second graders (age 8 years), will be unable to effectively utilise shoulder external/internal rotation during the throwing phase.  相似文献   

9.
The aim of this study was to determine coordination profiles for the field hockey drive. Nine elite female players performed five drives each. They were asked to primarily maximize ball placement accuracy, and secondly to drive with high velocity. An optical motion capture system recorded the displacement of six markers on the joints of the players' arms as they performed the drives, and a radar gun measured the ball velocity after impact. Spatial, temporal, and velocity variables were then established. Discrete relative phases were also established at ball impact to examine medio-lateral and proximo-distal upper-arms coordination. The high standard deviation values in joint kinematics were indicative of inter-individual variability, i.e. several drive solutions. Cluster analysis was thus used and two profiles among the players were identified. For the two profiles, the global coordination pattern of movement (upper-arm coordination) was in-phase for the right arm, and out-of-phase for the left lead arm, suggesting a segmental sequencing. However, differences were noted on local kinematic parameters which led to the following categorization: the 'strong group' for defenders and the 'temporal-effectiveness group' for midfielders and forwards. The results support the value of individual analysis to better interpret and contrast the distinct roles of expert players.  相似文献   

10.
The purpose of this study was to investigate the effect of the racket mass and the rate of strokes on the kinematics and kinetics of the trunk and the racket arm in the table tennis topspin backhand. Eight male Division I collegiate table tennis players hit topspin backhands against topspin balls projected at 75 balls · min?1 and 35 balls · min?1 using three rackets varying in mass of 153.5, 176 and 201.5 g. A motion capture system was used to obtain trunk and racket arm motion data. The joint torques of the racket arm were determined using inverse dynamics. The racket mass did not significantly affect all the trunk and racket arm kinematics and kinetics examined except for the wrist dorsiflexion torque, which was significantly larger for the large mass racket than for the small mass racket. The racket speed at impact was significantly lower for the high ball frequency than for the low ball frequency. This was probably because pelvis and upper trunk axial rotations tended to be more restricted for the high ball frequency. The result highlights one of the advantages of playing close to the table and making the rally speed fast.  相似文献   

11.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 +/- 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 +/- 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

12.
We aimed to assess the relationship between throwing distance and kinematic release parameters of the flying disc in unskilled throwers, and to assess the relationship between kinetic variables acting on flying discs and the change in spin velocity during long forehand throws by skilled and unskilled throwers. Ten skilled and eleven unskilled throwers performed throws at maximum effort. Reflective marker positions on the disc and body were recorded with a 3D motion capture system during the throws to derive kinematic variables of a disc and kinetic variables acting on the disc. The analysis interval was from maximum external shoulder rotation to disc release. Significant correlations were observed between the throwing distance and spin velocity in skilled (r = 0.722, < 0.05) and unskilled throwers (r = 0.794, < 0.01), between the change in spin velocity and the angular impulse of moments of force, in unskilled throwers (r = 0.703, < 0.05), and between the change in spin velocity and the angular impulse of torque among skilled throwers (r = 0.680, < 0.01). Therefore, a strategy for increasing spin velocity in unskilled throwers could be used to generate a larger torque, similar to that observed in skilled throwers.  相似文献   

13.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 ± 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 ± 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

14.
The aims of this study were to examine the release speed of the ball in maximal instep kicking with the preferred and the non-preferred leg and to relate ball speed to biomechanical differences observed during the kicking action. Seven skilled soccer players performed maximal speed place kicks with the preferred and the non-preferred leg; their movements were filmed at 400 Hz. The inter-segmental kinematics and kinetics were derived. A coefficient of restitution between the foot and the ball was calculated and rate of force development in the hip flexors and the knee extensors was measured using a Kin-Com dynamometer. Higher ball speeds were achieved with the preferred leg as a result of the higher foot speed and coefficient of restitution at the time of impact compared with the non-preferred leg. These higher foot speeds were caused by a greater amount of work on the shank originating from the angular velocity of the thigh. No differences were found in muscle moments or rate of force development. We conclude that the difference in maximal ball speed between the preferred and the non-preferred leg is caused by a better inter-segmental motion pattern and a transfer of velocity from the foot to the ball when kicking with the preferred leg.  相似文献   

15.
The aims of this study were to examine the release speed of the ball in maximal instep kicking with the preferred and the non-preferred leg and to relate ball speed to biomechanical differences observed during the kicking action. Seven skilled soccer players performed maximal speed place kicks with the preferred and the nonpreferred leg; their movements were filmed at 400 Hz. The inter-segmental kinematics and kinetics were derived. A coefficient of restitution between the foot and the ball was calculated and rate of force development in the hip flexors and the knee extensors was measured using a Kin-Com dynamometer. Higher ball speeds were achieved with the preferred leg as a result of the higher foot speed and coefficient of restitution at the time of impact compared with the non-preferred leg. These higher foot speeds were caused by a greater amount of work on the shank originating from the angular velocity of the thigh. No differences were found in muscle moments or rate of force development. We conclude that the difference in maximal ball speed between the preferred and the non-preferred leg is caused by a better inter-segmental motion pattern and a transfer of velocity from the foot to the ball when kicking with the preferred leg.  相似文献   

16.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15°, thus requiring a measurement to confirm legality in “suspect” bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion–extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15°. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

17.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15 degrees, thus requiring a measurement to confirm legality in "suspect" bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion-extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15.5 degrees. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

18.
To determine the contributions of the motions of the body segments to the vertical ground reaction force (Fz), the joint torques produced by the leg muscles, and the time course of vertical velocity generation during a vertical jump, 15 men were videotaped performing countermovement vertical jumps from a force plate with and without an arm swing. Linear kinematic, Fz, and joint torque data were computed and compared using repeated measures analysis of variance. Maximum jump height was significantly larger in the arm swing jumps compared to the no arm swing jumps and was due to both a higher height of the center of mass (CM) at takeoff (54%) and a larger vertical velocity of the CM at takeoff (46%). The net vertical impulse created during the propulsive phase of the arm swing jumps was greater due to a trend of an increased duration (0.021 s) of the propulsive phase and not to larger average values of Fz. In the arm swing jumps, the arm motion resulted in the arms making a larger maximal contribution to Fz during the middle of the propulsive phase and decreased the negative contribution of the trunk-head and thigh to Fz late in the propulsive phase. Last, the arm swing decreased the extensor torques at the hip (13%), knee (10%), and ankle (10%) early in the propulsive phase but augmented these same extensor torques later in the propulsive phase.  相似文献   

19.
ABSTRACT

To maintain the accuracy of squash shots under varying conditions, such as the oncoming ball’s velocity and trajectory, players must adjust their technique. Although differences in technique between skilled and less-skilled players have been studied, it is not yet understood how players vary their technique in a functional manner to maintain accuracy under varying conditions. This study compared 3-dimensional joint and racket kinematics and their variability between accurate and inaccurate squash forehand drives of 9 highly skilled and 9 less-skilled male athletes. During inaccurate shots, less-skilled players hit the ball with a more open racket, demonstrating a difference in this task-relevant parameter. No joint kinematic differences were found for accuracy for either group. Coordinated joint rotations at the elbow and wrist both displayed a “zeroing-in” effect, whereby movement variability was reduced from the initiation of propulsive joint rotation to a higher consistency at ball-impact; potentially highlighting the “functionality” of the variability prior to the impact that enabled consistent task-relevant parameters (racket orientation and velocity) under varying conditions. Further, highly skilled players demonstrated greater consistency of task-relevant parameters at impact than less-skilled players. These findings highlight the superior ability of highly skilled players to adjust their technique to achieve consistent task-relevant parameters and a successful shot.  相似文献   

20.
The aim of this study was to investigate the throwing velocity and kinematics of overarm throwing in team handball of elite female and male handball players. Kinematics and ball velocity of a 7 metre-throw in eleven elite male (age 23.6 ± 5.2 yr, body mass 87.0 ± 6.8 kg, height 1.85 ± 0.05 m) and eleven elite female (age 20.3 ± 1.8 yr, body mass 69.9 ± 5.5 kg, height 1.75 ± 0.05 m) team handball players were recorded. The analysis consisted of maximal joint angles, angles at ball release, maximal angular velocities of the joint movements, and maximal linear velocities of the distal endpoints of segments and their timing during the throw. The ball release velocity of the male handball players was significantly higher than the females (21.1 vs. 19.2 m · s(-1); p < 0.05). No major differences in kinematics were found, except for the maximal endpoint velocities of the hand and wrist segment, indicating that male and female handball players throw with the same technique. It was concluded that differences in throwing velocity in elite male and female handball players are generally not the result of changes in kinematics in the joint movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号