首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题目:已知x1是方程x lgx=10的根,x2是方程x 10x=10的根,则x1 x2的值为().A.8B.10C.11D.12解法一:图像法.如右图,作出y=lgx,y=10x,y=10-x的图像,由对称性易知x1 x22=5,则x1 x2=10,选B.解法二:估值法.y10y=10xy=xy=lgxxy=10-x01x25x1101设(fx)=x 1gx,g(x)=x 10x,它们在各自的定义域内都是增函数.因为f(9)=9 lg9<10,(f10)=10 lg10=11>10,所以(f9)<(fx1)<(f10),910,则g(0)相似文献   

2.
一、解函数题例1.方程lgx+x-3=0的解x0所在区间为以下选项中的哪一个?A(0,1)B(1,2)C(2,3)D(3,∞)解析:如图1,先构造函数f(x)=lgx与g(x)=3-x并作出它们的图象,如图1可知可以确定x∈(1,3),但f(2)-g(2)=lg2-1<0,即x=2时,f(x)2.同理:f(3)-g(3)=lg3-0>0,即x=3时,知f(x)>g(x),∴x0<3.∴答案为C.例2.求函数y=x√+1-x√的值域.解析:作y1=x√,y2=1-x√的图象,如图2,由函数图1的定义域为[0,1]和图象知:函数在x=0,x=1时,有最小值1;在x=12时,取最大值2√.(对称性图象)∴函数的值域是[1,2√].二、解不等式例3.求不等式5-4x-x2√≥x解集.图2…  相似文献   

3.
若函数 y=f ( x)存在反函数 y=f-1( x) ,则对于定义域中的任何一个 x都有 f-1[f( x) ]=x成立 .同样 f[f-1( x) ]=x也成立 .这种性质在处理反函数的有关问题中有着很多应用 .1 求值例 1、方程 log2 x x=3的根为 x1,方程 2 x x=3的根为 x2 ,求 x1 x2 的值 .分析 :直接求解比较困难 .由题可知 ,其中 y=log2 x 与y =2 x 互为反函数 ,利用反函数性质来处理 ,令 f ( x) =log2 x,则 f-1( x) =2 x.解 :f( x1) =3 -x1,1 f-1( x2 ) =3 -x2 2由 2两边同取 f ,得 f ( 3 -x2 ) =x2 .3另一方面 y=f ( x)是单调递增的 .比较 1 3当 x1>3 -x2 ,即 x1 x2 >3时…  相似文献   

4.
※求值问题※例1:已知函数f(x)=x2(x>0),1(x=0)0(x<0)".,求f{f[f(-3)]}的值.分析:明确自变量在函数的哪一个段上,是解此类题的关键.解:∵-3<0,∴f(-3)=0,∴f[f(-3)]=1,∴f{f[f(-3)]}=f(1)=12=1.※求解析式问题※例2:已知f(x)=x,g(x)=-x+1,!(x)=-12x+2.设f(x),g(x),!(x)的最大值为F(x),求F(x)的解析式.分析:本题的关键是画出图象,求出交点,从而正确地分段,再在各段上写出符合要求的解析式,最后写出分段函数的解析式.解:如图,画出f(x),g(x),!(x)的图象,下面再求交点坐标.!由y=-x+1,y=-21x+2".得yx==3-2,".由y=x,y=-12x+2".得y=34%%%%$%%%…  相似文献   

5.
抽象函数、反函数求值、讨论函数奇偶性、对称性等函数问题是现今高考经常考查的问题,综合性的考题更是常见。对于此类问题,许多学生都觉得很难把握,要么束手无策,常做常错,要么做得很繁为此,有必要让学生学会并掌握好“相关点”的方法,化难为易,化繁为简以下就几类问题,介绍此法一、求函数值例1设f(x)=23xx--32,又y=g(x-1)与y=f-1(x+1)的图象关于直线x+y=0对称,则g(2)的值为解一∵f(x)=32xx--23,∴f-1(x)=23xx--23,∴y=f-1(x+1)=32xx+-11∵y=g(x-1)与y=f-1(x+1)的图象关于直线x+y=0对称,∴g(x-1)=21x-+x3(用(-y,-x)代替f-1(x+1)中的(x,y),…  相似文献   

6.
设函数y=f(x),y=g(x)的反函数分别为:y=f~(-1)(x),y=g~(-1)(x).记方程f(x)=g(x)及f~(-1)(x)=g~(-1)(x)的根分别为α、β.若F(x)=f(x)-g(x)是单调函数,则有β=f(α)=g(α).  相似文献   

7.
一、分段函数的反函数分段函数的反函数一定也是分段函数,具体求时,一般是把每一段当作单个函数来求,最后写成分段函数的形式.在这个过程中要注意函数的定义域、值域与其反函数的值域、定义域的对应关系.例1设函数f(x)=-log3(x 1),x∈(6, ∞),3x-6,x∈(-∞,6]的反函数为f-1(x),若f-119=a,则f(a 4)=.解当x>6时f(x)<0,x≤6时f(x)>0.又f-119=a,∴f(a)=91,∴3a-6=91,解得a=4,∴f(a 4)=f(8)=-log3(8 1)=-2.例2求函数f(x)=x2-1,x∈[0,1),239-x2,x∈[-3,0)的反函数.解由y=x2-1(0≤x<1),解得x=1 y(-1≤y<0).又由y=239-x2(-3≤x<0)得x=-9-49y2(0≤y<2…  相似文献   

8.
一、问题的提出与探究已知函数f(x)=(-3x 7)~(1/2)(0≤x≤7/3), 求y=f(x)与它的反函数y=f-1(x)的交点.一般常有这样的思路: 解:y=f(x)与y=f-1(x)相交于y=x上, 所以建立方程 x=(-3x 7)~(1/2)(0≤x≤7/3), (舍去),  相似文献   

9.
一、选择题(每小题6分,共36分)1.函数y=f(x)与y=g(x)的定义域和值域都是R,且都有反函数.则函数y=f-1(g-1(f(x)))的反函数是().(A)y=f(g(f-1(x)))(B)y=f(g-1(f-1(x)))(C)y=f-1(g(f(x)))(D)y=f-1(g-1(f(x)))2.集合M由满足如下条件的函数f(x)组成:当x1、x2∈[-1,1]时,有|f(x1)-f(x2)|≤4|x1-x2|.对于两个函数f1(x)=x2-2x+5,f2(x)=|x|,以下关系中成立的是().(A)f1∈M,f2∈M(B)f1∈M,f2∈M(C)f1∈M,f2∈M(D)f1∈M,f2∈M3.抛物线y=2x2上两点A(x1,y1)、B(x2,y2)关于直线y=x+m对称.若2x1x2=-1,则2m的值是().(A)3(B)4(C)5(D)64.在△ABC中,…  相似文献   

10.
一、选择题1.设sinα=-35,cosα=54,那么下列的点在角α的终边上的是().A.(-3,4)B.(-4,3)C.(4,-3)D.(3,4)2.下列四组函数f(x)与g(x),表示同一个函数的是().A.f(x)=sinx,g(x)=xsxinxB.f(x)=sinx,g(x)=1-cos2xC.f(x)=1,g(x)=sin2x+cos2xD.f(x)=1,g(x)=tanxcotx3.tanx+tany=0是tan(x+y)=0的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件4.要得到y=sin2x-π3的图象,只需将y=sin2x的图象().A.向左平移3πB.向右平移3πC.向左平移6πD.向右平移6π5.若α、β∈0,π2,则().A.cos(α+β)>cosα+cosβB.cos(α+β)>s…  相似文献   

11.
题目 (2016年全国卷二理科12)已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=x+1/x与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(xm,ym),则m∑i=1(xi+yi)=(). (A)0 (B)m (C)2m (D)4m 1 一题多解 本题条件中f(x)(x∈R)为抽象函数,且满足f(-x)=2-f(x),而题目要求我们求y=f(x)与y=x+1/x交点横坐标与纵坐标的和.那么我们就要弄清它们交点之间的关系,显然y=x+1/x这个反比例型函数自身关于点(0,1)中心对称,这时我们就要由f(x)(x∈R)的条件f(-x)=2-f(x)判断其是否也关于点(0,1)中心对称,这样就必须熟悉抽象函数的对称性.基于选择题的特点,那么方向不外乎两个:一是利用两函数的对称性理论求解;二是利用选择题答案的唯一性可构造特殊函数求解.  相似文献   

12.
对于有些解析几何题,正面思考或按常规方法求解较难时,若能利用圆锥曲线系,巧设未知数,往往能起到事半功倍的效果,下举例说明.一、得用共交点的圆锥曲线系解题一般地过圆锥曲线C1:f(x,y)=0与圆锥曲线C2:g(x,y)=0的交点的圆锥曲线系方程都可以表示成:f(x,y)+λg(x,y)=0(λ≠-1)(不包括圆锥曲线C2),如过圆C1:x2+y2+D1x+E1y+F=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的圆系方程为:x2+y2+D1x+E1y+F+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).例1已知圆C1:x2+y2+3x+4y+3=0,圆C2:x2+y2+4x+5y-1=0,求过已知两圆的交点,且过原点的圆的方程.解由已知不妨设过已知两圆的交点圆的方程为:x2+y2+3x+4y+3+λ(x2+y2+4x+5y-1)=0(λ≠-1).又圆过原点,将(0,0)代入圆方程可解得λ=3,从而所求的方程为:4x2+4y2+15x+19y=0.  相似文献   

13.
问疑答难     
豁1.已知xl是方程x lgx一3的解,是方程x 10,一3的解,则x、 等于多少? :由x,是方程x十lgx~3的x, lgx,=3,即lgx;=3一x,.众两解x:是方程x 10’~3的解,解徐由暴魂得x: 10,2=3,即10二2=3一x2. x,是y一lgx的图象与直线y~3一x的交点的横坐标,x:是y ~10’的图象与直线y~3一x的交点的横坐标.又y一lgx与y~10,的图象关于直线y一x对称,xl xZ一2二。(x。是直线y~3一x与y一x的交点的横坐标).生狱理化易求得x。一粤,则x, x:一3.‘2.解方程:(x一2)(x一3)(x一4)(x一5)=120.解:原方程可化为〔(x一2)(x一5)〕〔(x一3)(x一4)j=120,即(xZ一7x …  相似文献   

14.
王魁兴 《中学数学月刊》2006,(4):46-47,49,F0004
一、选择题1.设函数f(x)=x3(x∈R),当0≤θ≤π2时,f(m sin)θ+f(1-m)>0恒成立,则实数m的取值范围是().(A)(0,1)(B)(-∞,0)(C)(-∞,1)(D)(-∞,12)2.函数f(x)=ax+b(a>0且a≠1)的图象过点(1,1),且00,x2>0且x1≠x2),则p,q的大小关系是().(A)p>q(B)p相似文献   

15.
第13届“希望杯”全国数学邀请赛高中一年级培训题第56题综合了考查函数、反函数、方程等知识,并且可以应用数形结合思想。是一道很有思维空间的好题,试题如下:题已知函数y=f(x)有反函数y=f-1(x),方程f(x)+x-2002=0有唯一实根α,方程f-1(x)+x-2002=0有唯一实根β,则α+β=___.解 (数形结合法)  相似文献   

16.
在反函数的教学中,一个有趣的问题是:函数y=f(x)与其反函数y=f-1(x)的图象如果有交点,交点是否都在直线y=x上?有不少人认为答案是肯定的.但是显然,函数f(x)=1/x(x∈R)与其反函数的图象的交点并不都在直线y=x上.又如f(x)=  相似文献   

17.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

18.
求 f(x) (x∈A ,y∈C)与f- 1(x)交点 ,一般方法是 :由 f(x)求出 f- 1(x) ,再求A∩C ,最后在x∈A ∩C下求解方程组 y=f(x) ,y=f- 1(x) .本文避开对f- 1(x)的分析 ,仅从 f(x)的特征出发 ,获得了求解f(x)与 f- 1(x)交点的一种新方法 .该方法较一般方法少了求 f- 1(x)的表达式 ,且对 f(x)也无苛刻的单调性要求 .另外 ,本文给出了交点的特征 (推论1)及从单调函数与非单调函数、分段函数与非分段函数方面给出了 5个典型应用例子 .记 y=f(x)x =f(y) 为方程组 (※ ) .定理 1 设 y=f(x) (x∈A ,y∈C)存在反函数 y =f- 1(x) ,则 y =f(x)与 y=f- 1…  相似文献   

19.
正三次函数及其相关的问题,近年来在各级各类考查试卷中经常出现,其中大部分题型都可利用导数法来求解.本文介绍几种常见类型的求解方法,供参考.一、三次函数的切线例1已知函数f(x)=x3-x+2,试求过点P(1,2)的曲线y=f(x)的切线方程.解析设切点P0(x0,y0),由f'(x)=3x2-1,则f'(x0)=3x20-1,过点P0的方程为y-y0=f'(x0)(x-x0),即y-(x30-x0+2)=(3x20-1)(x-x0).又切线过点P(1,2),则2-(x30-x0+2)=(3x20-1)(1-x0),分解因式得(x0-1)2(2x0+1)=0,解之得x0=1或x0=-12.则f'(-12)=-14,f'(1)=2.故所求的切线方程为y-2=-14(x-1)和y-2=2(x-1).  相似文献   

20.
Ⅰ.正比例函数f(x)=kx(k≠0,x∈R)的抽象函数的特征式为:(1)f(x+y)=f(x)+f(y);(2)f(x-y)=f(x)-f(y);(3)f(xy)=k1f(x)f(y),特别地当k=1时,有f(xy)=f(x)f(y).例1:定义在R上的函数f(x),恒有f(x+y)=f(x)+f(y),若f(16)=4,那么f(2003)=.解法1(基本解法):令x=y=0,得f(0)=2f(0),∴f(0)=0.令y=-x,得f(x-x)=f(x)+f(-x),即f(-x)=-f(x),∴f(x)是奇函数.令y=x,得f(2x)=2f(x),f(22x)=f(2·2x)=2f(2x)=22f(x),…,f(2nx)=2nf(x).又∵f(16)=4,∴f(1)=41.∵f(2003)=f(211-25-23-22-1),∴f(2003)=f(211)-f(25)-f(23)-f(22)-f(1)=(211-25-23-22-1)·f(1)=20403.…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号