首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
探索:将一个三角形沿着一条中线剪开,得两个面积相等的三角形.如图1,沿中线AD将△ABC剪开,得△ABD和△ACD,有S△ABD=S△ACD.再研究一下这两个三角形的边与角,发现AD=AD,BD=CD,∠ADB+∠ADC=180°.猜想:如果两个三角形的边与角之间满足上述条件,这两个三角形面积相等吗?如图2,在△ABC和△A'B'C中,BC=B'C'=a,AC=A'C'=b,∠ACB+∠A'C'B'=180°.我们试将这两个三角形拼合,使A'C'与AC重合.∵∠ACB+∠A'C'B'=180°,∴B'在BC的延长线上.又∵BC=B'C',∴C是△ABB'的边BB'的中点.∴S△ABC=S△A'B'C'.(等底等高)这说明…  相似文献   

2.
定理任意平面五边形ABCDE中,有 S_(ABC)·S_(ADE) S_(ABD)·S_(AEC) S_(ABE)·S_(ACD)=0, (1)其中S_(xyz)表△XYZ的有向面积。  相似文献   

3.
根据“同底等高的两三角形面积相等”,我们不难得到:三角形的中线具有等分三角形面积的特性,具体地,若线段AD为ΔABC的中线(如图1),则SΔABD=SΔACD;反之也成立,因此,我们常把三角形中线称为面积等分线.  相似文献   

4.
<正>在近几年的中考试题中,"二等分"图形的面积问题频频出现.解答这类题目的关键是要熟练掌握常见图形的"等积线"的应用.一、三角形的等积线(二分线)探究如图1,直线a∥b,S_(△BCE)=S_(△BCF)(同底等高),易得S_(△BOE)=S_(△COF).如图2,中线AD所在的直线就是△ABC的等积线,  相似文献   

5.
初中平面几何中的“平行线分线段成比例定理”之证明是不严格的,并且叙述也较繁,学生不易看懂,我们可以这样来证: 如图,设直线AD∥BE∥CF.连接A E、EC、DB、BF.根据等底等高的两个三角形面积相等,得 S_(△ABE)=S_(△DBE),S_(△BEC)=S_(△BEF),①设△AEC的高为EH,△DBF的高为EH',  相似文献   

6.
三角形内(外)角平分线定理三角形的内(或外)角平分线分对边所得两条线段和这个角的两边对应成比例。证明:这里采取利用三角形面积的证法。如图1,AD(AE)是△ABC的内角∠CAB(外角∠CAF)的平分线,作DG⊥AB,自D作AC的垂线交延长线于H,则DG=DH。于是 S_(ΔABD):S_(ΔACD)=(1/2AB×DG):(1/2AC×DH)=AB:AC又设BC与AD的夹角为α(锐角),则当以AD为底时△ADB与△ADC的高BM、CN分别为BDsinα,DCsinα。这样,S_(ΔADB):S_(ΔADC)=(1/2AD×BDsinα)  相似文献   

7.
96.已知P是△ABO内的一点,△PAB、△PBC、△PCA、△ABC的外接圆均相等,求证:P是△ABC的垂心. (湖北叶年新供题) 97.求方程甲硕~ 甲乡了二甲飞f的所有正整数解. (江苏戴俊琪供题) 98.正六边形ABCDE刃,的面积为Se,对角线AD上一点尸在三边AF、万百、ED上的射影分别是p,、p:、p:,试  相似文献   

8.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

9.
题:在△ABC 内求作一点 P,使△PAB、△PBC、△PCA 的面积之比为1:2:3。我们先给出一个命题:P为△ABC 的内任一点,过 P 点分别作 AB、AC 的平行线交 BC 于 D、E,  相似文献   

10.
本文结合几道高考试题,对三棱锥的一个简单性质在求锥体体积问题中的运用予以介绍.预备知识三角形一边的中线将原三角形分成的两个三角形的面积相等.如图,已知点D是△ABC的边BC上的中点,则由三角形的面积公式易知S△ABD=S△ACD.定理  相似文献   

11.
在文[1]中阐述了用"三角形等积定理"(等底等高的两个三角形面积相等)作任意三角形面积平分线(使面积平分为二的直线)的方法和过任意四边形一顶点作其面积平分线的方法.阅此文后,经过进一步探索,得出了从任意位置作任意凸多边形的面积平分线的很简单而通用的作法.下面从过顶点和边上任意一点两方面介绍作法:1过任意凸多边形的顶点作面积平分线①任意三角形时,如图1,取BC边中点D,连接AD,显然S△ABD=S△ACD(三角形等积定理),即AD为面积平分线.  相似文献   

12.
定理 设D是△ABC的边BC中点,则S_△ABD=S_△ACD。这是中线的一个性质,本文巧用这一性质解两道竞赛。 例1 (81年芜湖市竞赛题)如图1,AA′,BB′,CC′是△ABC的外接圆直径,试证:S_△ABC=S_△ABC′ S_△BCA′ S_△CAB′。  相似文献   

13.
<正>在直角坐标系中,△ABC的顶点A(x_A,y_A),B(x_B,y_B),C(x_C,y_C),过点A作l∥y轴,交BC所在直线于点D,设D(x_D,y_D),则S_(△ABC)=1/2|y_A-y_D|·|x_C-x_B|.下面我们来证明这个公式.当△ABC位置如图1时,过C作CF⊥l,过B作BE⊥l,垂足分别为F,E,所以x_D=x_E=x_F,有AD=y_A-y_D,CF=x_C-x_D,BE=x_D-x_B,所以S_(△ABC)=S_(△ABD)+  相似文献   

14.
三对对棱都相等的四面体称为等腰四面体。等腰四面体具有一些特殊性质。在等腰四面体ABCD中,设BC=AD=a,AC=BD=b,AB=CD=c,且令P=(1/2)(a+b+c),k~2=(1/2)(a~2+b~2+c~2),l=ab+bc+ca,n=abc。以BC、BD、CD为棱的侧面间的二面角是α、β、γ,△BCD、△ABC、△ABD、△ACD的面积依次是S、S_1、S_2、S_3,四面体的体积为V,外接球半径为R,内切球半径为r,等腰四面体ABCD性质可以列举如下:  相似文献   

15.
性质已知△ABC 及点 P,若λ_1 λ_2 λ_3=λ_1,λ_2,λ_3都是非零实数,则△PBC,△PCA,△PAB 的面积之比为|λ_1|:|λ_2|:|λ_3|.1 性质证明证明如图1,作向量=λ_1=λ_2,=λ_3,则点 P 为△A′B′C′的重心。所以S_(△PBC)=1/(|λ_2|·|λ_3|)·S_(△PB′C′)  相似文献   

16.
证明两个多边形的面积相等,首先要掌握有关面积的性质和三角形的面积公式及其推论,其次还要掌握下面的两个结论。一、等积的两个结论 1.如图1.D是ΔABC中BC边上的中点,则要S_(ΔABD)=S_(ΔACD)。(等底同高的三角形的面积相等)  相似文献   

17.
定理 P是△ABC形内任一点,AP、BP、CP的延长线分别与其对边交于D、E、F,则PD/AD PE/BE PF/CF=1 证 如图1,设△PAB、△PBC、△PAC和△ABC的面积依次为S_1、S_2、S_3和S,则,S_1 S_2 BS_3=S,又PD/AD=  相似文献   

18.
如上图,连结BE,则三角形BDE与三角形CDE同底等高,所以面积相等,这两个三角形的面积分别减去三角形DOE的面积后,面积仍相等。即S_(△BOE)=S_(△COD)=60平方米。  相似文献   

19.
84年在贵州参加全国数学竞赛的命题工作,会议期间曾讨论过一道问题: 设在△ABC中,D为BC的中点,G为重心,过G任作直线分别交AB、AC于E、F。设AE/AB=h,AF/AC=k,求证我们不想局限于就解决这一个问题,所以,先作一些推广,考虑一下,D为BC上任意一点,G为AD上任意一点,这时的结论是什么? 设BD/DC=λ_1/λ_2,λ_1+λ_2=1,AG/AD=t,我们断言有为了证明(2),我们借助于三角形的面积。设△AEG,△AGF,△ABC的面积分别为S_1,S_2,S。则由于△ABD的高与△ABC的高相同,而  相似文献   

20.
三角形的一个有趣性质   总被引:1,自引:1,他引:0  
定理:在△ABC内三点D、E、F满足∠BAE=∠CAF,∠ABD=∠CBF,且AD、BE、CF三线共点P,则∠ACD=∠BCE.反之,若∠ACD=∠BCE,则AD、BE、CF三线共点  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号