首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this study, we examined hamstring muscle activation at different running speeds to help better understand the functional characteristics of each hamstring muscle. Eight healthy male track and field athletes (20.1 ± 1.1 years) performed treadmill running at 50%, 75%, 85%, and 95% of their maximum velocity. Lower extremity kinematics of the hip and knee joint were calculated. The surface electromyographic activities of the biceps femoris and semitendinosus muscles were also recorded. Increasing the running speed from 85% to 95% significantly increased the activation of the hamstring muscles during the late swing phase, while lower extremity kinematics did not change significantly. During the middle swing phase, the activity of the semitendinosus muscle was significantly greater than that of the biceps femoris muscle at 75%, 85%, and 95% of running speed. Statistically significant differences in peak activation time were observed between the biceps femoris and semitendinosus during 95%max running (P < 0.05 for stance phase, P < 0.01 for late swing phase). Significant differences in the activation patterns between the biceps femoris and semitendinosus muscles were observed as running speed was increased, indicating that complex neuromuscular coordination patterns occurred during the running cycle at near maximum sprinting speeds.  相似文献   

2.
3.
Wireless sensing solutions that provide accurate long-term monitoring of walking and running gait characteristics in a real-world environment would be an excellent tool for sport scientist researchers and practitioners. The purpose of this study was to compare the performance of a body-worn wireless gyroscope-based gait analysis application to a marker-based motion capture system for the detection of heel-strike and toe-off and subsequent calculation of gait parameters during walking and running. The gait application consists of a set of wireless inertial sensors and an adaptive algorithm for the calculation of temporal gait parameters. Five healthy subjects were asked to walk and run on a treadmill at two different walking speeds (2 and 4?kph) and at a jogging (8?kph) and running (12?kph) speed. Data were simultaneously acquired from both systems. True error, percentage error and ICC scores indicate that the adaptive algorithm successfully calculated strides times across all speeds. However, results showed poor to moderate agreement for stance and swing times. We conclude that this gait analysis platform is valid for determining stride times in both walking and running. This is a useful application, particularly in the sporting arena, where long-term monitoring of running gait characteristics outside of the laboratory is of interest.  相似文献   

4.
The aim of this study was to determine the effect of prior cycling on EMG activity of selected lower leg muscles during running. Ten elite level triathletes underwent two testing sessions at race pace: a 40 km cycle followed by a 2 km run (CR) and a 10 km run followed by a 2 km run (RR). EMG data from selected lower limb muscles were collected at three sections of each run (0 km, 1 km and 2 km) for six strides using a portable data logger. Significant differences (p < 0.05) between condition were found for the level of activation (Lact) for biceps femoris (BF) during stance and vastus lateralis (VL) during flight and stance. Vastus medialis (VM) changed in Lact, during flight, between sections in the 2 km run. Furthermore, significant differences (p < 0.05) between condition were found for BF during stance and for rectus femoris (RF) and VM during flight. There was a significant difference (p < 0.05) in the duration of VL activation (Dact) across sections of the 2 km run. Findings from this investigation highlight changes in muscle function when changing from cycling to running and indicate a need to train specifically for the cycle to run transition. Such training may improve performance and reduce the risk of injury.  相似文献   

5.
Triathlon     
The aim of this study was to determine the effect of prior cycling on EMG activity of selected lower leg muscles during running. Ten elite level triathletes underwent two testing sessions at race pace: a 40 km cycle followed by a 2 km run (CR) and a 10 km run followed by a 2 km run (RR). EMG data from selected lower limb muscles were collected at three sections of each run (0 km, 1 km and 2 km) for six strides using a portable data logger. Significant differences (p < 0.05) between condition were found for the level of activation (Lact) for biceps femoris (BF) during stance and vastus lateralis (VL) during flight and stance. Vastus medialis (VM) changed in Lact, during flight, between sections in the 2 km run. Furthermore, significant differences (p < 0.05) between condition were found for BF during stance and for rectus femoris (RF) and VM during flight. There was a significant difference (p < 0.05) in the duration of VL activation (Dact) across sections of the 2 km run. Findings from this investigation highlight changes in muscle function when changing from cycling to running and indicate a need to train specifically for the cycle to run transition. Such training may improve performance and reduce the risk of injury.  相似文献   

6.
In white-water kayaking, the legs play a vital part in turning, stabilising and bracing actions. To date, there has been no reported information on neuromuscular activation of the legs in an authentic white-water environment. The aim of the current study was to identify lower body muscle activation, using ‘in-boat’ electromyography (EMG), whilst navigating a white-water run. Ten experienced male kayakers (age 31.5?±?12.5 yr, intermediate to advanced experience) completed three successful runs of an international standard white-water course (grade 3 rapids), targeting right and left sides of the course, in a zigzag formation. Surface EMG (sEMG) outputs were generated, bilaterally, for the rectus femoris (RF), vastus lateralis, biceps femoris and gastrocnemius, expressed as a percentage of a dynamic maximal voluntary contraction (dMVC). Only RF showed significantly higher activation than any muscle on the left side of the body, and only on the left side of the course (P?=?.004; ETA2?=?0.56). Other results showed no significant difference between muscle activation in the right and left legs during each run, nor when assessed at either the right or left side of the course (P?>?.05). These findings indicate that contralateral symmetry in lower limb muscle activation is evident during white-water kayaking. This symmetry may provide a stable base to allow more asymmetrical upper body and trunk movements to be fully optimised. Lower body symmetry development should be considered useful in targeted training programmes for white-water kayakers.  相似文献   

7.
BackgroundThe few previous studies that focused on the effects of compression garments (CG) on distance running performance have simultaneously measured electromyogram, physiological, and perceptual parameters. Therefore, this study investigated the effects of CG on muscle activation and median frequency during and after distance running, as well as blood-lactate concentration and rating of perceived exertion (RPE) during distance running.MethodsEight healthy male recreational runners were recruited to randomly perform two 40 min treadmill running trials, one with CG, and the other with control garment made of normal cloth. The RPE and the surface electromyography (EMG) of 5 lower extremity muscles including gluteus maximus (GM), rectus femoris (RF), semitendinosus (ST), tibialis anterior (TA), and gastrocnemius (GAS) were measured during the running trial. The blood-lactate levels before and after the running trial were measured.ResultsWearing CG led to significant lower muscle activation (p < 0.05) in the GM (decreased 7.40%–14.31%), RF (decreased 4.39%–4.76%), and ST (decreased 3.42%–7.20%) muscles; moreover, significant higher median frequency (p < 0.05) in the GM (increased 5.57%) and ST (increased 10.58%) muscles. Wearing CG did not alter the RPE values or the blood-lactate levels (p > 0.05).ConclusionWearing CG was associated with significantly lower muscle activation and higher median frequency in the running-related key muscles during distance running. This finding suggested that wearing CG may improve muscle function, which might enhance running performance and prevent muscle fatigue.  相似文献   

8.
We aimed to investigate neuromuscular activation of thigh muscles during track cycling at various speeds. Eight male competitive cyclists volunteered to participate in this study. Surface electromyography of the vastus lateralis, biceps femoris and adductor magnus muscles of the bilateral legs was recorded during track cycling on velodromes with a 250-m track. The participants were instructed to maintain three different lap times: 20, 18 and 16 s. The average rectified value (ARV) was calculated from the sampled surface electromyography. Significantly higher ARVs were observed in the right compared to left leg for the biceps femoris muscle during both straight and curved sections at 18- and 16-s lap times (P < 0.05). In the biceps femoris muscle, significant changes in ARVs during the recovery phase with an increase in speed were seen in the right leg only (P < 0.05). There were no significant differences in ARVs between the straight and curved sections for all three muscles (P > 0.05). From our findings, it was suggested that during track cycling on a velodrome the laterality of the biceps femoris muscle activity is a key strategy to regulate the speed, and fixed neuromuscular strategies are adopted between straight and curved sections for thigh muscles.  相似文献   

9.
Abstract

The aim of the present study was to analyse differences in muscle response and mechanical characteristics of the vastus medialis, rectus femoris, vastus lateralis, and biceps femoris in elite volleyball players of both sexes using tensiomyography. To this end, 47 players of nine nationalities playing for teams in the men's and women's Spanish Superleagues were assessed. The sample comprised 22 women (age 24.6±4.3 years; weight 72.14±10.06 kg; height 178.40±8.50 cm) and 25 men (age 25.0±4.3 years; weight 88.76±9.07 kg; height 194.71±7.84 cm). Tensiomyography was used to assess muscular response and muscular mechanical characteristics. For this purpose, the following variables were analysed: maximum radial displacement of muscle belly and normalized response speed. The findings show, both in men and women, a higher normalized response speed score in the vastus lateralis and vastus medialis compared with the rectus femoris and biceps femoris. A marked lateral symmetry of maximum radial displacement of the muscle belly was also observed in the musculature of the lower limbs, with no statistically significant differences being detected in either men or women. There were, however, clear differences in terms of normalized response speed between male and female volleyball players: women displayed a more pronounced difference in the normalized response speed of the musculature responsible for extension (vastus medialis, rectus femoris, and vastus lateralis) and flexion (biceps femoris) of the knee joint than men. Moreover, tensiomyography proved to be a highly sensitive tool for detecting such changes.  相似文献   

10.
Purpose. We aimed to determine the effect of speed-induced changes in foot contact patterns on the vertical instantaneous loading rate (VILR). We hypothesized that transition runners, i.e. runners that shift towards a mid- (MF) or forefoot contact pattern (FF) when running speed increases, show smaller increases in VILR than non-transition runners, i.e. runners that remain with a rearfoot contact pattern (RF).

Methods. Fifty-two male and female runners ran overground at 3.2, 4.1, 5.1 and 6.2?m?s?1. Ground reaction forces, lower limb sagittal plane knee and ankle kinematics and plantar pressures were recorded. Multi-level linear regression models were used to assess differences between transition and non-transition runners.

Results. Non-transition runners experienced larger speed-induced increases in VILR (48.6?±?2.6?BW?s?1 per m?s?1) than transition runners (–1.4?±?7.6?BW?s?1 per m?s?1). Transition runners showed higher VILRs and a more flat foot touch down at the same pre-transition speed than non-transition runners.

Conclusion. When running speed increases, some runners transition towards more anterior foot contact patterns. This reduces or even eliminates the speed-induced increase in VILR. This result is especially the case for those RF runners who already have relatively high VILRs and flat foot positioning at slower running speeds.  相似文献   

11.
Electromyographic (EMG) activity of the leg muscles and the ground reaction forces were recorded in 17 elite male middle-distance runners, who performed isometric maximal voluntary contractions (MVC) as well as running at different speeds. Electromyograms were recorded from the gluteus maximus, vastus lateralis, biceps femoris, gastrocnemius and tibialis anterior. The results indicated that the averaged EMG (aEMG) activities of all the muscles studied increased (P?<?0.05) with increasing running speed, especially in the pre-contact and braking phases. At higher speeds, the aEMG activities of the gastrocnemius, vastus lateralis, biceps femoris and gluteus maximus exceeded 100% MVC in these same phases. These results suggest that maximal voluntary contractions cannot be used as an indicator of the full activation potential of human skeletal muscle. Furthermore, the present results suggest that increased pre-contact EMG potentiates the functional role of stretch reflexes, which subsequently increases tendomuscular stiffness and enhances force production in the braking and/or propulsive phases in running. Furthermore, a more powerful force production in the optimal direction for increasing running speed effectively requires increased EMG activity of the two-joint muscles (biceps femoris, rectus femoris and gastrocnemius) during the entire running cycle.  相似文献   

12.
Changes in muscle activity with increasing running speed   总被引:3,自引:2,他引:1  
Electromyographic (EMG) activity of the leg muscles and the ground reaction forces were recorded in 17 elite male middle-distance runners, who performed isometric maximal voluntary contractions (MVC) as well as running at different speeds. Electromyograms were recorded from the gluteus maximus, vastus lateralis, biceps femoris, gastrocnemius and tibialis anterior. The results indicated that the averaged EMG (aEMG) activities of all the muscles studied increased (P < 0.05) with increasing running speed, especially in the pre-contact and braking phases. At higher speeds, the aEMG activities of the gastrocnemius, vastus lateralis, biceps femoris and gluteus maximus exceeded 100% MVC in these same phases. These results suggest that maximal voluntary contractions cannot be used as an indicator of the full activation potential of human skeletal muscle. Furthermore, the present results suggest that increased pre-contact EMG potentiates the functional role of stretch reflexes, which subsequently increases tendomuscular stiffness and enhances force production in the braking and/or propulsive phases in running. Furthermore, a more powerful force production in the optimal direction for increasing running speed effectively requires increased EMG activity of the two-joint muscles (biceps femoris, rectus femoris and gastrocnemius) during the entire running cycle.  相似文献   

13.
We analyzed gait and function of the supporting limb in participants of a marathon race at three stages: prerace, midrace (18 km), and near the end of the race (36 km). We confirmed that the most successful runners were able to maintain running speed for the duration of the race with little change in speed or gait. Speed slowed progressively during the race for those with slower race times, but stride frequency–stride length relationships remained normal for the speed they ran. These findings differ from most lab-based studies of fatigue, in which runners are forced to match a constant preset treadmill speed. Small changes in maximum ground force were seen in both slow- and fast-running participants as race end approached.  相似文献   

14.
Abstract

Introduction: In response to fatigue during an exhaustive treadmill run, forefoot runner’s muscles must adapt to maintain their pace. From a neuromuscular control perspective, certain muscles may not be able to sustain the force to meet the run’s demands; thus, there may be alternative muscle coordination in the lower extremity that allows for continued running for an extended period of time. The aim of this study was to quantify the change in muscle coordination during a prolonged run in forefoot runners.

Methods: Thirteen forefoot runners performed exhaustive treadmill runs (mean duration: 15.4?±?2.2?min). The muscle coordination of seven lower extremity muscles was quantified using a high-resolution time–frequency analysis together with a pattern recognition algorithm.

Results: The mean EMG intensity for the lateral and medial gastrocnemius muscles decreased with the run (p?=?0.02; 0.06). The weight factors of the second principal pattern decrease by 128.01% by the end of run (p?=?0.05, Cohen’s d?=?0.42) representing a relatively greater biceps femoris activation in midstance but smaller midstance rectus femoris, vastus medialis, triceps surae, and tibialis anterior activation.

Discussion: These results suggest that forefoot runners cannot sustain plantar flexor activation throughout an exhaustive run and change their muscle coordination strategy as a compensation. Understanding the underlying compensation mechanisms humans use to cope with fatigue will help to inform training modalities to enhance these late stage muscle activation strategies for athletes with the goal of improving performance and reducing injury.  相似文献   

15.
Abstract

To determine if unilateral measures of muscle architecture in the rectus femoris (RF) and vastus lateralis (VL) were related to (and predictive of) sprinting speed and unilateral (and bilateral) force (FRC) and power (POW) during a 30 s maximal sprint on the Woodway Curve 3.0TM non-motorized treadmill (TM). Twenty-eight healthy, physically active men (n = 14) and women (n = 14) (age = 22.9 ± 2.4 years; body mass = 77.1 ± 16.2 kg; height = 171.6 ± 11.2 cm; body-fa t = 19.4 ± 8.1%) completed one familiarization and one 30-s maximal sprint on the TM to obtain maximal sprinting speed, POW and FRC. Muscle thickness (MT), cross-sectional area (CSA) and echo intensity (ECHO) of the RF and VL in the dominant (DOM; determined by unilateral sprinting power) and non-dominant (ND) legs were measured via ultrasound. Pearson correlations indicated several significant (p < 0.05) relationships between sprinting performance [POW (peak, DOM and ND), FRC (peak, DOM, ND) and sprinting time] and muscle architecture. Stepwise regression indicated that POWDOM was predictive of ipsilateral RF (MT and CSA) and VL (CSA and ECHO), while POWND was predictive of ipsilateral RF (MT and CSA) and VL (CSA); sprinting power/force asymmetry was not predictive of architecture asymmetry. Sprinting time was best predicted by peak power and peak force, though muscle quality (ECHO) and the bilateral percent difference in VL (CSA) were strong architectural predictors. Muscle architecture is related to (and predictive of) TM sprinting performance, while unilateral POW is predictive of ipsilateral architecture. However, the extent to which architecture and other factors (i.e. neuromuscular control and sprinting technique) affect TM performance remains unknown.  相似文献   

16.
Abstract

Previous studies have shown that cycling can directly influence neuromuscular control during subsequent running in some highly trained triathletes, despite these triathletes' years of practice of the cycle–run transition. The aim of this study was to determine whether cycling has the same direct influence on neuromuscular control during running in moderately trained triathletes. Fifteen moderately trained triathletes participated. Kinematics of the pelvis and lower limbs and recruitment of 11 leg and thigh muscles were compared between a control run (no prior exercise) and a 30 min run that was preceded by a 15 min cycle (transition run). Muscle recruitment was different between control and transition runs in only one of 15 triathletes (<7%). Changes in joint position (mean difference of 3°) were evident in five triathletes, which persisted beyond 5 min of running in one triathlete. Our findings suggest that some moderately trained triathletes have difficulty reproducing their pre-cycling movement patterns for running initially after cycling, but cycling appears to have little influence on running muscle recruitment in moderately trained triathletes.  相似文献   

17.
This study examined the validity of the Actical accelerometer step count and energy expenditure (EE) functions in healthy young adults. Forty-three participants participated in study 1. Actical step counts were compared to actual steps taken during a 200 m walk around an indoor track at self-selected pace and during treadmill walking at different speeds (0.894, 1.56 and 2.01 m · s–1) for 5 min. The Actical was also compared to three pedometers. For study 2, 15 participants from study 1 walked on a treadmill at their predetermined self-selected pace for 15 min. Actical EE was compared to EE measured by indirect calorimetry. One-way analysis of variance and t-tests were used to examine differences. There were no statistical difference between Actical steps and actual steps in self-selected pace walking and during treadmill walking at moderate and fast speeds. During treadmill walking at slow speed, the Actical step counts significantly under predicted actual steps taken. For study 2, there was no statistical difference between measured EE and Actical-recorded EE. The Actical provides valid estimates of step counts at self-selected pace and walking at constant speeds of 1.56 and 2.01 m · s–1. The Actical underestimates EE of walking at constants speeds ≥1.38 m · s–1.  相似文献   

18.
The aim of this study was to investigate how lower extremity muscles are influenced by body weight support during running at different speeds. Nine participants (age 24 ± 2 years, height 1.75 ± 0.12 m, mass 73.5 ± 15.7 kg) ran at 100%, 115%, and 125% of preferred speed at 100%, 90%, 80%, 70%, and 60% of body weight on a treadmill that provided body weight support. Preferred speed was self-selected by each participant and represented a speed that he or she could sustain if going for a 30 min run. Electromyography (EMG) data were recorded (1000 Hz, 1 min) from the bicep femoris, rectus femoris, tibialis anterior, and gastrocnemius for each condition together with knee angle (electrogoniometer). Average and root mean square EMG were calculated across 30 s. Muscle patterns were determined by smoothing (low-pass filter, 4 Hz) and extracting patterns for 49 cycles defined by consecutive maximum knee flexion angles. Repeated-measures analyses of variance were used to compare average and root mean square across body weight and speeds. Correlations were computed between the 100% speed/100% body weight condition and all other conditions per muscle. There was no interaction between body weight and speed (P > 0.05). Average and root mean square decreased as body weight decreased for all muscles (P < 0.05) and increased across speeds for all muscles (P < 0.05). Correlations for all muscles between conditions were high (range: 0.921-0.999). Although a percent reduction in body weight did not lead to the same reduction in muscle activity, it was clear that reducing body weight leads to a reduction in muscle activity with no changes in muscle activity patterns.  相似文献   

19.
Negative associations between physical activity (PA), physical fitness and multiple metabolic risk factors (MMRF) in youths from populations with low PA are reported. The persistence of this association in moderately-to highly active populations is not, however, well established. The aim of the present study was to investigate this association in a Brazilian city with high frequency of active youths. We assessed 122 subjects (9.9?±?1.3 years) from Muzambinho city. Body mass index, waist circumference, glycaemia, cholesterolaemia, systolic and diastolic blood pressures were measured. Maximal handgrip strength and one-mile walk/run test were used. Leisure time PA was assessed by interview. Poisson regression was used in the analysis. The model explained 11% of the total variance. Only relative muscular strength and one-mile walk/run were statistically significant (p?相似文献   

20.
Abstract

The direct effects of cycling on movement and muscle recruitment patterns (neuromuscular control) during running are unknown but critical to success in triathlon. We outline and test a new protocol for investigating the direct influence of cycling on neuromuscular control during running. Leg movement (three-dimensional kinematics) and muscle recruitment (surface electromyography, EMG) were compared between a control run (no prior exercise) and a 30-min transition run that was preceded by 20 min of cycling. We conducted three experiments investigating: (a) the repeatability (between-day reliability) of the protocol; (b) the ability of the protocol to investigate, in highly trained national or international triathletes, the direct influence of cycling on neuromuscular control during running independent of neuromuscular fatigue; and (c) the ability of the protocol to provide a control, or baseline, measure of neuromuscular control (determined using a measure of stability) without causing fatigue. Kinematic and EMG measures of neuromuscular control during running showed moderate to high repeatability: mean coefficients of multiple correlation for repeatability of EMG and kinematics were 0.816 ± 0.014 and 0.911 ± 0.031, respectively. The protocol provided a robust baseline measure of neuromuscular control during running without causing neuromuscular fatigue (coefficients of multiple correlation for stability of EMG and kinematics were 0.827 ± 0.023 and 0.862 ± 0.054), while EMG and force data provided no evidence of fatigue. The protocol outlined here is repeatable and can be used to measure any direct influence of cycling on neuromuscular control during running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号