首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

2.
This investigation examined the effects of three pre-match and half-time cooling manoeuvres on physical performance and associated physiological and perceptual responses in eight University soccer players during a non-motorised treadmill based individualised soccer-specific simulation [intermittent soccer performance test (iSPT)] at 30°C. Four randomised experimental trials were completed; following 30-min (pre-match) and 15-min (half-time) cooling manoeuvres via (1) ice slurry ingestion (SLURRY); (2) ice-packs placed on the quadriceps and hamstrings (PACKS); (3) mixed-methods (MM; PACKS and SLURRY concurrently); or no-cooling (CON). In iSPT first half, a moderate increase in total (Mean?±?Standard Deviation: 108?±?57 m, qualitative inference: most likely, Cohen’s d: 0.87, 90%CL: ±0.31), high-speed (56?±?46 m, very likely, 0.68?±?0.38) and variable run (15?±?5 m, very likely, 0.81?±?0.47) distance covered was reported in MM compared with CON. Additionally, pre-match reductions in thermal sensation (–1.0?±?0.5, most likely, –0.91?±?0.36), rectal (–0.6?±?0.1°C, very likely, –0.86?±?0.35) and skin temperature (–1.1?±?0.3°C, very likely, –0.88?±?0.42) continued throughout iSPT first half. Physical performance during iSPT first half was unaltered in SLURRY and PACKS compared to CON. Rectal temperature was moderately increased in SLURRY at 45-min (0.2?±?0.1°C, very likely, 0.67?±?0.36). Condition did not influence any measure in iSPT second half compared to CON. Only MM pre-match cooling augmented physical performance during iSPT first half, likely due to peripheral and central thermoregulatory factors favourably influencing first half iSPT performance. Further practical half-time cooling manoeuvres which enhance second half performance are still required.  相似文献   

3.
Abstract

The purpose of this study was to compare the effects of two practical precooling techniques (skin cooling vs. skin + core cooling) on cycling time trial performance in warm conditions. Six trained cyclists completed one maximal graded exercise test ([Vdot]O2peak 71.4 ± 3.2 ml · kg?1 · min?1) and four ~40 min laboratory cycling time trials in a heat chamber (34.3°C ± 1.1°C; 41.2% ± 3.0% rh) using a fixed-power/variable-power format. Cyclists prepared for the time trial using three techniques administered in a randomised order prior to the warm-up: (1) no cooling (control), (2) cooling jacket for 40 min (jacket) or (3) 30-min water immersion followed by a cooling jacket application for 40 min (combined). Rectal temperature prior to the time trial was 37.8°C ± 0.1°C in control, similar in jacket (37.8°C ± 0.3°C) and lower in combined (37.1°C ± 0.2°C, P < 0.01). Compared with the control trial, time trial performance was not different for jacket precooling (?16 ± 36 s, ?0.7%; P = 0.35) but was faster for combined precooling (?42 ± 25 s, ?1.8%; P = 0.009). In conclusion, a practical combined precooling strategy that involves immersion in cool water followed by the use of a cooling jacket can produce decrease in rectal temperature that persist throughout a warm-up and improve laboratory cycling time trial performance in warm conditions.  相似文献   

4.
Sweat lactate reflects eccrine gland metabolism. However, the metabolic tendencies of eccrine glands in a hot versus thermoneutral environment are not well understood. Sixteen male volunteers completed a maximal cycling trial and two 60-min cycling trials [30°C?=?30±1°C and 18°C?=?18±1°C wet bulb globe temperature (WBGT)]. The participants were requested to maintain a cadence of 60 rev?·?min?1 with the intensity individualized at ~ 90% of the ventilatory threshold. Sweat samples at 10, 20, 30, 40, 50 and 60?min were analysed for lactate concentration. Sweat rate at 30°C (1380±325?ml?·?h?1) was significantly greater (P<0.05) than at 18°C (632±311?ml?·?h?1). Sweat lactate concentration was significantly greater (P<0.05) at each time point during the 18°C trial, with values between trials tending to converge across time. During the 30°C trial, both heart rate (20, 30, 40, 50 and 60?min) and rectal temperature (30, 40, 50 and 60?min) were significantly higher than in the 18°C trial. Higher sweat lactate concentrations coupled with lower sweat rates may indicate a greater relative contribution of oxygen-independent metabolism within eccrine glands during exercise at 18°C. Decreases in sweat lactate concentration across time suggest either greater dilution due to greater sweat volume or increased reliance on aerobic metabolism within eccrine glands. The convergence of lactate concentrations between trials may indicate that time-dependent modifications in sweat gland metabolism occur at different rates contingent partially on environmental conditions.  相似文献   

5.
Skin and core tissue cooling modulates skeletal muscle oxygenation at rest. Whether tissue cooling also influences the skeletal muscle deoxygenation response during exercise is unclear. We evaluated the effects of skin and core tissue cooling on skeletal muscle blood volume and deoxygenation during sustained walking and running. Eleven male participants walked or ran six times on a treadmill for 60 min in ambient temperatures of 22°C (Neutral), 0°C for skin cooling (Cold 1), and at 0°C following a core and skin cooling protocol (Cold 2). Difference between oxy/deoxygenated haemoglobin ([diffHb]: deoxygenation index) and total haemoglobin content ([tHb]: total blood volume) in the vastus lateralis (VL) muscle was measured continuously. During walking, lower [tHb] was observed at 1 min in Cold 1 and Cold 2 vs. Neutral (P?0.05). Lower [diffHb] was seen at 1 and 10 min in Cold 2 vs. Neutral by 13.5 ± 1.2 µM and 15.3 ± 1.4 µM and Cold 1 by 10.4 ± 3.1 µM and 11.1 ± 4.1 µM, respectively (P?0.05). During running, [tHb] was lower in Cold 2 vs. Neutral at 10 min only (P = 0.004). [diffHb] was lower at 1 min in Cold 2 by 11.3 ± 3.1 µM compared to Neutral and by 13.5 ± 2.8 µM compared to Cold 1 (P?0.001). Core tissue cooling, prior to exercise, induced greater deoxygenation of the VL muscle during the early stages of exercise, irrespective of changes in blood volume. Skin cooling alone, however, did not influence deoxygenation of the VL during exercise.  相似文献   

6.
Abstract

Studies have reported the benefits of pre-cooling prior to exercise in the heat for male athletes, but at this time no research has investigated female athletes. The aim of the following study was to test the effects of pre-cooling on female repeat sprint performance in hot, humid conditions; namely is ice ingestion effective in reducing core temperature (Tc) and does this reduced Tc lead to improved repeat sprint performance in female athletes? Nine female team sport athletes with mean age (21.0 ± 1.2 y), height (169.8 ± 4.1 cm) and body mass (62.3 ± 5.0 kg) participated in this study. Participants completed 72 min of an intermittent sprint protocol (ISP) consisting of 2 × 36 min halves in hot, humid conditions (33.1 ± 0.1°C, 60.3 ± 1.5% RH) on a cycle ergometer. This was preceded by 30 min of either ice ingestion (ICE) or water consumption (CON) in a randomised order. At the end of the pre-cooling period, Tc significantly decreased following ICE (?0.7 ± 0.3°C) compared to CON (?0.1 ± 0.2°C; p = 0.001). Tc also remained lower in ICE compared to CON during the ISP (p = 0.001). Ratings of perceived thermal sensation were lower in ICE compared to CON (p = 0.032) at the beginning (p = 0.022) and mid-point (p = 0.035) of the second half. No differences in work, mean power, peak power, rating of perceived exertion, heart rate or sweat loss between conditions were recorded (p > 0.05). Ice ingestion significantly reduced female Tc prior to intermittent exercise in the heat and reduced thermal sensation; however, this did not coincide with improved performance.  相似文献   

7.
Objective: Effective warm-ups are attributed to several temperature-related mechanisms. Strategies during the transition phase, preceding swimming competition, have been shown to prolong temperature-related warm-up effects. The purpose of this study was to evaluate the effects of two different clothing strategies during the transition phase, on subsequent 100-m maximal swimming performance. Methods: Nine competitive swimmers (3 female, 21?±?3?yrs; 6 male 20?±?2?yrs, mean performance standard 702 FINA Points, mean 100-m seasons best time 61.54?s) completed their own 30-min individual pool warm-up, followed by 7-min changing time and a 30-min transition phase, straight into a 100-m maximal effort time-trial. During the transition phase, swimmers remained seated, either wearing warm or limited clothing. Swimmers returned 1 week later, where clothing conditions were alternated. Results: Post-transition phase skin and core temperature remained higher in the warm clothing condition compared to the limited clothing condition (Mean Core: 36.90?±?0.17°C, 36.61?±?0.15°C, P?P?P?Conclusion: Wearing warm clothing during a 30-min transition phase improved swimming performance by 0.6%, compared to limited clothing.  相似文献   

8.
To examine the influence of pre-warming on the physiological responses to prolonged intermittent exercise in ambient temperatures of 21.5?±?0.6°C and relative humidities of 35.7?±?5.4% (mean?±?s), six healthy men performed intermittent treadmill running (30-s bouts at 90% of maximal oxygen uptake separated by 30-s static recovery periods) to exhaustion after active pre-warming, passive pre-warming and pre-exercise rest (control). Exercise time to exhaustion was significantly different between all conditions (active, 51.8?±?7.2?min; passive, 38.5?±?11.1?min; control, 72.0?±?17.2?min; P <?0.05). These changes in performance time were closely associated with a significant decline in both the rate of heat storage and heat storage capacity (P <?0.05). Rectal temperature, heart rate and ratings of perceived exertion were significantly higher during exercise in the two pre-warming conditions than in the control condition (P <?0.05). Ratings of perceived exertion were also significantly higher during exercise following passive pre-warming compared with active pre-warming (P <?0.05). During exercise there were no significant differences in serum prolactin, plasma norepinephrine and plasma free fatty acid concentrations between conditions. We conclude that both active and passive pre-warming promote a reduction in prolonged intermittent exercise capacity in environmental temperatures of 21°C compared with pre-exercise rest. These performance decrements were dependent upon the mode of pre-warming and closely reflected alterations in body heat content.  相似文献   

9.
Nine well-trained, unacclimatized female hockey players performed the Loughborough Intermittent Shuttle Test (LIST) interspersed with three field hockey skill tests in hot (30°C, 38% relative humidity) and moderate (19°C, 51% relative humidity) environmental conditions. Field hockey skill performance declined in both the hot and moderate conditions following 30 and 60?min of the LIST compared with pre-LIST values (P <?0.01). This decrement in performance was compounded in the hot environment with a 6% poorer performance in the heat recorded for the second skill test at 30?min (P <?0.05, hot 101.7?±?3.6 vs moderate 95.7?±?2.9?s; mean ±?s x). However, no difference was found in the decision-making element of the skill test. Fifteen-metre sprint times were slower in the hot condition (P <?0.01). In the hot environment, rectal temperature (P?<?0.01), perceived exertion (P?<?0.05), perceived thirst (P?<?0.01), blood glucose concentration (P?<?0.05) and serum aldosterone concentration (P?<?0.01) were higher. Estimated mean (?±?s x) sweat rate was higher in the hot trial (1.27?±?0.10?l?·?h?1) than in the moderate trial (1.05?±?0.12?l?·?h?1) (P?<?0.05). Body mass was well maintained in both trials. No differences in serum cortisol, blood lactate, plasma volume or plasma ammonia concentrations were found. These results demonstrate that field hockey skill performance is decreased following intermittent high-intensity shuttle running and that this decrease is greater in hot environmental conditions. The exact mechanism for this decrement in performance remains to be elucidated, but is unlikely to be due to low glycogen concentration or dehydration.  相似文献   

10.
This investigation compared the effects of external pre-cooling and mid-exercise cooling methods on running time trial performance and associated physiological responses. Nine trained male runners completed familiarisation and three randomised 5 km running time trials on a non-motorised treadmill in the heat (33°C). The trials included pre-cooling by cold-water immersion (CWI), mid-exercise cooling by intermittent facial water spray (SPRAY), and a control of no cooling (CON). Temperature, cardiorespiratory, muscular activation, and perceptual responses were measured as well as blood concentrations of lactate and prolactin. Performance time was significantly faster with CWI (24.5 ± 2.8 min; = 0.01) and SPRAY (24.6 ± 3.3 min; = 0.01) compared to CON (25.2 ± 3.2 min). Both cooling strategies significantly (< 0.05) reduced forehead temperatures and thermal sensation, and increased muscle activation. Only pre-cooling significantly lowered rectal temperature both pre-exercise (by 0.5 ± 0.3°C; < 0.01) and throughout exercise, and reduced sweat rate (< 0.05). Both cooling strategies improved performance by a similar magnitude, and are ergogenic for athletes. The observed physiological changes suggest some involvement of central and psychophysiological mechanisms of performance improvement.  相似文献   

11.
Different ambient temperatures are known to affect muscular performance based on the type of contraction. The effect of cold (10°C) and thermoneutral (TN) (24°C) ambient temperatures on finger flexor performance was examined in 12 rock climbers. After 30?min of seated rest in the designated temperature condition, participants completed maximal voluntary contractions (MVC) on a climbing-specific finger flexor assessment device equipped with a crimp grip hold. Participants then completed an intermittent fatiguing task until failure. The fatiguing task consisted of 10-s contractions at 40% MVC followed by a 3-s of rest. MVC recovery was assessed immediately, 5, 10, and 15?min post-task failure. Estimated muscle temperature and subjective thermal ratings were significantly lower throughout testing in the cold condition (P?<?.001). Finger flexor MVC strength was similar between conditions at baseline and throughout recovery. Time to task failure was significantly longer (364?±?135 vs. 251?±?97 s, P?=?.003) and force time integral was greater (53,715?±?19,988 vs. 40,243?±?15,360?Ns, P?=?.001) during the cold condition. No significant differences were found between conditions for force variability or electromyography (EMG) at the start and end of the fatiguing task. However, the rate of increase in EMG for the TN condition was significantly faster (P?=?.03). These results suggest important implications for researchers when examining climbing performance, especially in outdoor settings where temperatures may vary from day to day. Inconsistencies in testing temperatures might significantly affect muscular endurance.  相似文献   

12.
Ratings of perceived exertion (RPE: 0–10) during resistance training with varying programming demands were examined. Blood lactate (BLa) and muscle activation (using surface electromyography: EMG) were measured as potential mediators of RPE responses. Participants performed three sets of single arm (preferred side) bicep curls at 70% of 1 repetition maximum over 4 trials: Trial (A) 3 sets?×?8 repetitions?×?120?s recovery between sets; (B) 3 sets?×?8 repetitions?×?240?s recovery; (C) 3 sets?×?maximum number of repetitions (MNR)?×?120?s recovery; (D) 3 sets?×?MNR?×?240?s recovery. Overall body (RPE-O) and active muscle (RPE-AM) perceptual responses were assessed following each set in each trial. Biceps brachii and brachioradialis muscle EMG was measured during each set for each trial. RPE-O and RPE-AM were not different between Trial A (3.5?±?1 and 6?±?1, respectively) and Trial B (3.5?±?1 and 5.5?±?1, respectively) (p?p?相似文献   

13.
The purpose of our study was to examine the physiological, perceptual, and performance effects of wearing a phase change cooling garment (CG) during an interval exercise routine in the heat. Sixteen male participants (age 23?±?3 years, ht 1.76?±?0.11?m; wt 78.5?±?11.2?kg; body fat 15.2?±?5.8%) completed two trials (one with phase change inserts, CG, and one control without inserts) consisting of two submaximal exercise portions separated by 5-minute seated rest, and a final maximal effort performance bout. Each submaximal bout involved 30?seconds or 1?minute of muscular endurance and agility exercises and 5?minutes of treadmill jogging and step-ups. The performance bout included 30?seconds or 1?minute of muscular endurance and agility exercises, with participants completing as many repetitions as possible, followed by a 15-minute recovery (active and passive). Rectal temperature (Tre) and heart rate were not different between trials, however change in Tre from baseline was improved during 10 and 15 minutes of recovery with the CG (P?<?.05). Mean skin temperature was lower using the CG vs control throughout the trial (P?<?.05). Thermal sensation was lower when using the CG compared to control (P?<?.001). There were no differences in any outcomes of the performance exercises (P?>?.05). These findings indicate that the continuous use of a CG during an interval style workout in the heat provides improvements in thermal sensation, however, only minimal thermophysiological benefits, and no performance augmentation.  相似文献   

14.
This study examined the effects of different work?–?rest durations during 40?min intermittent treadmill exercise and subsequent running performance. Eight males (mean?±?s: age 24.3?±?2.0 years, body mass 79.4?±?7.0?kg, height 1.77?±?0.05?m) undertook intermittent exercise involving repeated sprints at 120% of the speed at which maximal oxygen uptake (v-[Vdot]O2max) was attained with passive recovery between each one. The work?–?rest ratio was constant at 1:1.5 with trials involving short (6:9?s), medium (12:18?s) or long (24:36?s) work?–?rest durations. Each trial was followed by a performance run to volitional exhaustion at 150% v-[Vdot]O2max. After 40?min, mean exercise intensity was greater during the long (68.4?±?9.3%) than the short work?–?rest trial (54.9?±?8.1% [Vdot]O2max; P?<?0.05). Blood lactate concentration at 10?min was higher in the long and medium than in the short work?–?rest trial (6.1?±?0.8, 5.2?±?0.9, 4.5?±?1.3?mmol?·?l?1, respectively; P?<?0.05). The respiratory exchange ratio was consistently higher during the long than during the medium and short work?–?rest trials (P <?0.05). Plasma glucose concentration was higher in the long and medium than in the short work?–?rest trial after 40?min of exercise (5.6?±?0.1, 6.6?±?0.2 and 5.3?±?0.5?mmol?·?l?1, respectively; P?<?0.05). No differences were observed between trials for performance time (72.7?±?14.9, 63.2?±?13.2, 57.6?±?13.5?s for the short, medium and long work?–?rest trial, respectively; P = 0.17), although a relationship between performance time and 40?min plasma glucose was observed (P?<?0.05). The results show that 40?min of intermittent exercise involving long and medium work?–?rest durations elicits greater physiological strain and carbohydrate utilization than the same amount of intermittent exercise undertaken with a short work?–?rest duration.  相似文献   

15.
This study aimed at comparing the effectiveness of three lifestyle intervention programmes in health clubs “exercise only” (E), “exercise plus nutritional counselling” (E?+?NC), and “exercise plus weight loss program” (E?+?WLP) on weight loss under real-life conditions. An observational multicenter study including 788 overweight/obese new customers of 95 health clubs in Germany was performed. Participants chose E (n?=?512, 38?±?14?year, BMI 30.4?±?4.7?kg/m2), E?+?NC (n?=?179, 42?±?14?year, BMI 31.7?±?4.5?kg/m2), or E?+?WLP (n?=?97, 40?±?11?year, BMI 31.6?±?5.1?kg/m2). Anthropometric data, energy expenditure, and energy intake were assessed at baseline and after 3 months. All groups significantly reduced body weight (E: ?1.5?±?2.9?kg, E?+?NC: ?3.4?±?3.6?kg, E?+?WLP: ?5.5?±?4.3?kg, p?p?p?相似文献   

16.
Abstract

The purpose of this study was to examine the effect of fatiguing exercise on sex-related differences in the function of hamstring and quadriceps muscles at several angular velocities and joint angles. Physically active participants (50 male: 28.7?±?4.5y, 1.82?±?0.07 m, 82.3?±?6.87?kg; 50 female: 27.0?±?5.8y, 1.61?±?0.08 m, 68.75?±?9.24?kg) carried out an isokinetic assessment to determine concentric and eccentric torques during knee extension and flexion actions at three different angular velocities (60/180/300°/s). The H/QFUNCT was calculated using peak torque (PT) values at 3 different joint-angle-specific (15°, 30° and 45° of knee flexion). A repeated measures analysis of variance (ANOVA) was used to compare within group results. Between group comparisons of sex-related differences were assessed by independent T-tests. Fatiguing exercise in males resulted in a decrease in H/QFUNCT ratios for each angle of knee flexion at both 60°/s and 300°/s angular velocities (p?<?0.05). In females, significant decreases in H/QFUNCT ratios were observed following fatiguing exercise for each angle of knee flexion and angular velocity (p?<?0.01). Significant differences in H/QFUNCT ratios following fatiguing exercise were evident between males and females at each joint angle and angular velocity (p?<?0.01). These findings indicate sex related differences in H/QFUNCT ratios following fatiguing exercise. Females have greater reductions in torque and H/QFUNCT ratios following fatigue than their male counterparts. This potentially exposes females to higher risks of injury, particularly when fatigued. Practitioners should attend to the imbalance in fatigue resistance of hamstring and quadriceps function, particularly in female athletes.  相似文献   

17.
The aim of this study was to compare the impact of continuous (CON) and intermittent (INT) heat acclimation protocols on repeat-sprint performance, and to also assess the degree of performance decay following acclimation. Using a pair-matched, between subjects design, 16 trained male team sport athletes were allocated to either INT (8 sessions over 15 days) or CON acclimation (8 sessions over 8 days) groups. Participants performed a heat tolerance test (HTT) involving 60-min of repeat-sprint cycling with a 10-min half time break (in 35.3?±?0.7°C, 60.1?±?4.0%; RH) two days pre- (pre-HTT) and post-acclimation (post-HTT1). Decay was investigated with two further HTT's completed over the next two weeks (post-HTT2 and post-HTT3). Results showed the post-HTT1 performance variables [mean power (pre-HTT; INT?=?1002.07?±?173.74, CON?=?1057.10?±?180.07 / post-HTT1; INT?=?1097.11?±?186.85, CON?=?1163.77?±?184.65 W), mean power (W.kg?1), total work (kJ) and work (J.kg?1)] were greater than pre-HHT (p?p?相似文献   

18.
This study compared heart rate recovery (HRR) after incremental maximal exercise performed at the same external power output (Pext) on dry land ergocycle (DE) vs. immersible ergocycle (IE). Fifteen young healthy participants (30?±?7 years, 13 men and 2 women) performed incremental maximal exercise tests on DE and on IE. The initial Pext on DE was 25?W and was increased by 25?W/min at a pedalling cadence between 60 and 80?rpm, while during IE immersion at chest level in thermoneutral water (30°C), the initial Pext deployment was at a cadence of 40?rpm which was increased by 10?rpm until 70?rpm and thereafter by 5?rpm until exhaustion. Gas exchange and heart rate (HR) were measured continuously during exercise and recovery for 5?min. Maximal HR (DE: 176?±?15 vs. IE 169?±?12?bpm) reached by the subjects in the two conditions did not differ (P?>?.05). Parasympathetic reactivation parameters (ΔHR from 10 to 300?s) were compared during the DE and IE HR recovery recordings. During the IE recovery, parasympathetic reactivation in the early phase was more predominant (HRR at Δ10–Δ60?s, P?<?.05), but similar in the late phase (HRR at Δ120–Δ300?s, P?>?.05) when compared to the DE condition. In conclusion, incremental maximal IE exercise at chest level immersion in thermoneutral water accelerates the early phase parasympathetic reactivation compared to DE in healthy young participants.  相似文献   

19.
Abstract

The objective of this study was to evaluate the effects of a 20-min focal knee joint cooling intervention on quadriceps central activation ratio (CAR) in healthy volunteers. A counterbalanced, cross-over study assessed the effects of a focal joint cooling intervention compared with a control condition 3–14 days apart. Eleven healthy volunteers (6 males, 5 females; age 25 ± 5 years; height 1.71 ± 0.1 m, mass 77 ± 21 kg) were included in the final analysis. The joint cooling intervention consisted of two 1.5-litre ice bags applied to the knee joint for 20 min, in one of two counterbalanced sessions, completed 3–14 days apart. In the control session, participants sat quietly between the baseline and 20-min measurements. Quadriceps CAR was assessed at 70° of knee flexion at four instants (baseline, 20, 30, and 45 min). There was a significant treatment × time interaction (F 3,30 = 5.9, P = 0.003) and post hoc analyses revealed that CAR was higher in the focal knee joint cooling session than the control session at 20 min (0.79 ± 0.12 vs. 0.70 ± 0.12; t 10 = 3.9, P = 0.003) and 45 min (0.77 ± 0.10 vs. 0.69 ± 0.12; t 10 = 3.1, P = 0.01). The CAR tended to be higher during the experimental session than the control session at 30 min (0.79 ± 0.13 vs. 0.74 ± 0.11; t 10 = 2.1, P = 0.07).Volitional activation increased following focal knee joint cooling in healthy volunteers.  相似文献   

20.
There are few data in the published literature on sweat loss and drinking behaviour in athletes training in a cool environment. Sweat loss and fluid intake were measured in 17 first-team members of an elite soccer team training for 90 min in a cool (5°C, 81% relative humidity) environment. Sweat loss was assessed from the change in body mass after correction for the volume of fluid consumed. Sweat electrolyte content was measured from absorbent patches applied at four skin sites. Mean (?± s) sweat loss during training was 1.69?±?0.45 l (range 1.06?-?2.65 l). Mean fluid intake during training was 423?±?215 ml (44?-?951 ml). There was no apparent relationship between the amount of sweat lost and the volume of fluid consumed during training (r 2 = 0.013, P = 0.665). Mean sweat sodium concentration was 42.5?±?13.0 mmol?·?l?1 and mean sweat potassium concentration was 4.2?±?1.0 mmol?·?l?1. Total salt (NaCl) loss during training was 4.3?±?1.8 g. The sweat loss data are similar to those recorded in elite players undergoing a similar training session in warm environments, but the volume of fluid ingested is less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号