首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes an observer-based fuzzy adaptive output feedback control scheme for a class of uncertain single-input and single-output (SISO) nonlinear stochastic systems with quantized input signals and arbitrary switchings. The SISO system under consideration contains completely unknown nonlinear functions, unmeasured system states and quantized input signals quantized by a hysteretic quantizer. By adopting a new nonlinear disposal of the quantized input, the relationship between the control input and the quantized input is established. The hysteretic quantizer that we take can effectively avoid the chattering phenomena. Furthermore, the introduction of a linear observer makes the estimation of the states possible. Based on the universal approximation ability of the fuzzy logic systems (FLSs) and backstepping recursive design with the common stochastic Lyapunov function approach, a quantized output feedback control scheme is constructed, where the dynamic surface control (DSC) is explored to alleviate the computation burden. The proposed control scheme cannot only guarantee the boundedness of signals but also make the output of the system converge to a small neighborhood of the origin. The simulation results are exhibited to demonstrate the validity of the control scheme.  相似文献   

2.
This paper focuses on the problem of adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Radial basis function neural networks (NNs) are employed to approximate the unknown functions and an NN observer is constructed to estimate the unmeasurable system states. Moreover, an auxiliary system is introduced to compensate for the effect of input delay. With the aid of the backstepping technique and Lyapunov stability theorem, an adaptive NN output feedback controller is designed which can guarantee the boundedness of all the signals in the closed-loop systems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

3.
In this paper, the event-triggered decentralized control problem for interconnected nonlinear systems with input quantization is investigated. A state observer is constructed to estimate the unmeasurable states, and the state-dependent interconnections are accommodated by presenting some smooth functions. Then by employing backstepping technique and neural networks (NNs) approximation capability, a novel decentralized output feedback control strategy and an event-triggered mechanism are designed simultaneously. It is proved through Lyapunov theory that the closed-loop system is stable and the tracking property of all subsystems is guaranteed. Finally, the effectiveness of the proposed scheme is illustrated by an example.  相似文献   

4.
A robust multi-tracking problem is solved for heterogeneous multi-agent systems with uncertain nonlinearities and disturbances. The nonlinear function satisfies a Lipschitz condition with a time-varying gain, the integral of which is bounded by a linear function. A distributed impulsive protocol is proposed, where the position data and velocity data of desired trajectories are needed only at sampling instants. Based on the system decomposition technique, the error dynamic system of achieving multi-tracking is decomposed into two impulsive dynamic systems with vanishing perturbation and nonvanishing perturbation, respectively. Constructing a nominal model, then the multi-tracking problem is converted into the stability of impulsive dynamic system with nonvanishing perturbation under some conditions. It is proved that the proposed impulsive protocol is robust enough to solve the multi-tracking problem. Numerical examples are presented to illustrate the effectiveness of our theoretical results.  相似文献   

5.
6.
This paper studies the robust stabilization problem of a class of uncertain Lipschitz nonlinear systems with infinite distributed input delays. A novel robust predictor feedback controller is developed and the controller gain can be obtained via solving a linear matrix inequality. It is shown that the proposed robust predictor feedback controller can globally exponentially stabilize the concerned uncertain nonlinear system with infinite distributed input delays. The key to the proposed approach is the development of several new quadratic Lyapunov functionals. The obtained results are extended to the case of systems with both multiple constant input delays and infinite distributed input delays. It is noted that the obtained results include some existing results on systems with constant input delays or bounded distributed input delays as special cases. Finally, two examples of Chua’s circuit and spacecraft rendezvous system are presented to illustrate the effectiveness of the proposed robust controllers.  相似文献   

7.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

8.
This paper proposes an adaptive dynamic surface controller for uncertain time-delay non-strict nonlinear systems with unknown control direction and unknown dead zone. To this end, the problem of uncertainty in nonlinear terms of the overall system is managed such that the estimation of these terms is obtained by applying a fuzzy logic, which is established based on an adaptive approach. A particular observer is then designed to approximate the immeasurable states. Furthermore, to overcome the delay issue in the system, the Lyapunov Krasovskii functional is used to achieve design conditions for dynamic surface control. Moreover, the breach of the output in the system is addressed by employing a Barrier Lyapunov Function. Then, with the aim of the designed controller, the stability of the closed-loop system is ensured such that all states are limited, and the errors are semi-globally uniformly ultimately bounded (SGUUB). Finally, as an illustration of the effectiveness of the proposed controller, a practical simulation is provided.  相似文献   

9.
In this paper, a novel backstepping-based adaptive dynamic programming (ADP) method is developed to solve the problem of intercepting a maneuver target in the presence of full-state and input constraints. To address state constraints, a barrier Lyapunov function is introduced to every backstepping procedure. An auxiliary design system is employed to compensate the input constraints. Then, an adaptive backstepping feedforward control strategy is designed, by which the tracking problem for strict-feedback systems can be reduced to an equivalence optimal regulation problem for affine nonlinear systems. Secondly, an adaptive optimal controller is developed by using ADP technique, in which a critic network is constructed to approximate the solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. Therefore, the whole control scheme consists of an adaptive feedforward controller and an optimal feedback controller. By utilizing Lyapunov's direct method, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded (UUB). Finally, the effectiveness of the proposed strategy is demonstrated by using a simple nonlinear system and a nonlinear two-dimensional missile-target interception system.  相似文献   

10.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

11.
In this paper, we consider the quantized consensus problem of multiple discrete-time integrator agents which suffer from input saturation. As agents transmit state information through communication networks with limited bandwidth, the states of agents have to be quantized into a finite number of bits before transmission. To handle this quantized consensus problem, we introduce an internal time-varying saturation function into the controllers of all agents and ensure that the range of the state of each agent can be known in advance by its neighboring agents. Based on such shared state range information, we construct a quantized consensus protocol which implements a finite-bit quantization strategy to all states of agents and can guarantee the achievement of the asymptotic consensus under any given input saturation threshold. Such desired consensus can be guaranteed at as low bit rate as 1 bit per time step for each agent. Moreover, we can place an upper bound on the convergence rate of the consensus error of agents. We further improve that quantized consensus protocol to a robust version whose parameters are determined with only an upper bound on the number of agents and does not require any more global information of the inter-agent network. Simulations are done to confirm the effectiveness of our quantized consensus protocols.  相似文献   

12.
In this research, a hybrid adaptive bionic fuzzy control strategy is developed for a class of complicated nonlinear multiple-input-multiple-output (MIMO) systems with dead-zone input. The first component of the bionic adaptive controller is a general phrase for tunning system parameters depending on the present state, and the second component is a trend-based compensation for adjusting the system parameters. This technique makes the system more intelligent and boosts its anti-interference capabilities. The stability and convergence are analyzed using the Lyapunov synthetic method, and thus the parameter restrictions of the MIMO system are provided. Finally, the strong anti-interference of the system is verified by the simulations.  相似文献   

13.
Distributed coordination of multi-agent systems (MASs) has been investigated for many years, and fractional-order calculus has been proved that it can model the dynamics more accurately in certain circumstances. Hence, in this paper, combining the above two aspects, the distributed coordination of fractional-order MASs (FOMASs) is researched, which is a promising topic. Besides, in this paper, the uncertainty, inherent nonlinearity and external disturbances are taken into consideration, aiming at achieving the robust consensus tracking. In particular, the uncertain parameters will be identified from an optimization perspective using artificial bee colony algorithm (ABC). Firstly, to ameliorate the performance of the standard ABC, a hybrid ABC (hABC) incorporating two groups of searching mechanisms is designed, it facilitates the identification of unknown parameters. After obtaining the identified parameters, an efficient distributed nonlinear controller is raised to fulfill the robust consensus tracking. Finally, experiments prove that the designed parameters identification approach can successfully estimate the uncertain parameters with high accuracy, besides the designed control algorithm can robustly control the FOMASs.  相似文献   

14.
15.
This paper focuses on robust adaptive sliding mode control for discrete-time state-delay systems with mismatched uncertainties and external disturbances. The uncertainties and disturbances are assumed to be norm-bounded but the bound is not necessarily known. Sufficient conditions for the existence of linear sliding surfaces are derived within the linear matrix inequalities (LMIs) framework by employing the free weighting matrices proposed in He et al. (2008) [3], by which the corresponding adaptive controller is also designed to guarantee the state variables to converge into a residual set of the origin by estimating the unknown upper bound of the uncertainties and disturbances. Also, simulation results are presented to illustrate the effectiveness of the control strategy.  相似文献   

16.
In the presence of system uncertainties, external disturbances and input nonlinearity, this paper is concerned with the adaptive terminal sliding mode controller to achieve synchronization between two identical attractors which belong to a class of second-order chaotic system. The proposed controller with adaptive feedback gains can compensate nonlinear dynamics of the synchronous error system without calculating the magnitudes of them. Meanwhile, these feedback gains are updated by the novel adaptive rules without required that the bounds of system uncertainties and external disturbances have to be known in advance. Some sufficient conditions for stability are provided based on the Lyapunov theorem and numerical studies are performed to verify the effectiveness of presented scheme.  相似文献   

17.
This paper investigates the semi-global cooperative cluster output regulation problem of heterogeneous multi-agent systems with input saturation, the exosystems for each cluster can be different. To avoid using global information (e.g., the minimal nonzero eigenvalue of the Laplacian matrix) in the control protocol, an adaptive dynamic compensator is proposed to estimate exosystem’s state in fully distributed manner. A dynamic event-triggering mechanism with adaptive parameter is proposed in order to reduce the usage of communication resources. Low-gain feedback technique is utilized to deal with the influence of input saturation, and Lypunov-based stability analysis results are obtained. Moreover, it is formally shown that Zeno behavior can be excluded. The superiority of the proposed methods includes: the agents in each cluster are also heterogeneous, which is essentially different from [1]; the event-triggered control strategy does not depend on any global information; and the influence of saturation nonlinearity can be eliminated with low-gain feedback. Finally, a numerical example is provided to illustrate the effectiveness of the proposed methods.  相似文献   

18.
In this paper, a decentralized adaptive backstepping control scheme is proposed for a class of interconnected systems with nonlinear multisource disturbances and actuator faults. The nonlinear multisource disturbances comprise of two parts: one is the time-varying parameterized uncertainty; the other is the dynamic unexpected signal formulated by a nonlinear exogenous system. For each subsystem, the disturbances are compensated by an adaptive controller based on several dynamic signals and the bound estimation approach. Moreover, the effect of the actuator faults is tackled in spite of the fact that the faults may change in different cases infinite times. Meanwhile, through several smooth functions, the interactions among the subsystems are successfully disposed. As a result, the tracking errors can converge to an arbitrarily small value by choosing the design parameters appropriately. The proof of the closed-loop system stability is completed. Several illustrative examples are employed to demonstrate the effectiveness of the proposed method.  相似文献   

19.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

20.
This paper investigates the time-varying output formation tracking problem of heterogeneous multi-agent systems subjected to model uncertainties and external disturbances via adaptive event-triggered mechanism. Firstly, an adaptive distributed event-triggered observer is constructed to acquire the leader’s state and a time-varying formation output tracking controller utilizing sliding mode method is proposed to deal with the model uncertainties and external disturbances can be addressed. Secondly, an algorithm is given to claim the design procedures of the event-triggered based controller and asymptotic convergence of the controller is proved based on Lyapunov theory. Thirdly, Zeno-behavior is proved to be excluded strictly. Finally, a numerical example is given to illustrate the effectiveness of the proposed algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号