首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The focus of this paper is on the detection and estimation of parameter faults in nonlinear systems with nonlinear fault distribution functions. The novelty of this contribution is that it handles the nonlinear fault distribution function; since such a fault distribution function depends not only on the inputs and outputs of the system but also on unmeasured states, it causes additional complexity in fault estimation. The proposed detection and estimation tool is based on the adaptive observer technique. Under the Lipschitz condition, a fault detection observer and adaptive diagnosis observer are proposed. Then, relaxation of the Lipschitz requirement is proposed and the necessary modification to the diagnostic tool is presented. Finally, the example of a one-wheel model with lumped friction is presented to illustrate the applicability of the proposed diagnosis method.  相似文献   

3.
For a class of large-scale nonlinear time-delay systems with uncertain output equations, the problem of global state asymptotic regulation is addressed by output feedback. The class of systems under consideration are subject to feedforward growth conditions with unknown growth rate and time delays in inputs and outputs. To deal with the system uncertainties and the unknown delays, a novel low-gain observer with adaptive gain is firstly proposed; next, an adaptive output feedback delay-free controller is constructed by combining Lyapunov-Krasovskii functional with backstepping algorithm. Compared with the existing results, the controllers proposed are capable of handling both the uncertain output functions and the unknown time delays in inputs and outputs. With the help of dynamic scaling technique, it is shown that the closed-loop states converge asymptotically to zero, while the adaptive gain is bounded globally. Finally, the effectiveness of our control schemes are illustrated by three examples.  相似文献   

4.
The problem of constructing functional observers for linear systems with unknown inputs is considered. Necessary and sufficient conditions for the existence of a proper observer (without differentiations) are revisited. A simple and explicit form of a functional observer is presented. It is shown that when such observer is not proper, it is still possible to use the High-Order Sliding Mode differentiator to implement it. Nevertheless, in such case, additional conditions on the system and the unknown input are required.  相似文献   

5.
This paper develops a high gain observer with multiple sliding modes for simultaneous state and fault estimations for MIMO nonlinear systems. The novelty lies in the observer design that employs the combination of high-gain observer and sliding mode observer. The proposed observer does not impose the small-Lipschitz-constant condition on the system nonlinearity. By imposing a structural assumption on the nonlinear fault distribution matrix, the observability of the faults/unknown inputs w.r.t. the outputs is safeguarded and sliding modes are utilized for their reconstruction. The reconstruction of the faults from the sliding mode only relies on the output estimation error and thus can be implemented online together with the state estimation. Finally, an application to flexible joint robotic arm is used to illustrate the proposed method.  相似文献   

6.
This paper is concerned with the problem of simultaneous fault detection and control of switched systems under the asynchronous switching. A switching law and fault detection/control units called fault detector/controllers are designed to guarantee the fault sensitivity and robustness of the closed-loop systems. Different from the existing results, a state reset strategy is introduced in the process of fault detection/control, which reduces the conservatism caused by the jump of multiple Lyapunov functions at switching instants. Further, the proposed strategy is only dependent the state of fault detector/controllers, which is available when the system state is invalid. Finally, by using a performance gain transform technique, non-convex fault sensitivity conditions are converted into the convex error attenuation ones. This further improves the fault detection effect. A numerical example is given to demonstrate the effectiveness of the proposed results.  相似文献   

7.
This paper investigates the fault detectability of Boolean control networks. To deal with different circumstances, passive fault detectability and four types of active fault detectability are proposed for the first time. For passive fault detectability, in line with observed input-output data, several discriminant conditions are put forward. For active fault detectability, by resorting to an auxiliary system, the essence of active fault detectabilty is revealed via reachability. Subsequently, corresponding to different types of active fault detectability, algebraic criteria that facilitate verification are provided. At the same time, the relationships of four types of active fault detectability are discussed as well. In addition, an approach for calculating fault detection time is given by combining passive fault detectability with active fault detectability. Finally, the effectiveness of the results obtained is elaborated by several examples.  相似文献   

8.
This paper is concerned with the problems of set-based finite-time stability (SFTS) and set-based finite-time boundedness (SFTB) for both certain and uncertain linear time-varying systems. The concepts of SFTS and SFTB are defined. Different from existing results, sufficient conditions for SFTS and SFTB are directly derived from the basic definitions of finite-time stability (FTS) and finite-time boundedness (FTB) by using the convex hull technique rather than utilizing the weighted quadratic functions. Thus, more practical constraints on the system states can be dealt with. Furthermore, intervals, zonotopes and polytopes are employed to describe the typical compact convex sets. For linear uncertain systems, the uncertain time-varying state sets are assumed to be represented by interval matrices and matrix zonotopes, respectively. Finally, numerical examples are provided to illustrate the effectiveness of the main results.  相似文献   

9.
This paper focuses on the problem of semi-global output-feedback stabilization for a class of switched nonlinear time-delay systems in strict-feedback form. A switched state observer is first constructed, then switched linear output-feedback controllers for individual subsystems are designed. By skillfully constructing multiple Lyapunov–Krasovskii functionals and successfully solving several troublesome obstacles, such as time-varying delay and switching signals and nonlinearity in the design procedure, the switched linear output-feedback controllers designed can render the resulting closed-loop switched system semi-globally stabilizable under a class of switching signals with average dwell time. Furthermore, under some milder conditions on nonlinearities, the semi-global output-feedback stabilization problem for switched nonlinear time-delay systems is also studied. Simulation studies on two examples, which include a continuous stirred tank reactor, are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   

10.
In this paper, a robust fault tolerant control, which provides a global fixed-time stability, is proposed for robot manipulators. This approach is constructed based on an integration between a fixed-time second-order sliding mode observer (FxTSOSMO) and a fixed-time sliding mode control (FxTSMC) design strategy. First, the FxTSOSMO is developed to estimate the lumped disturbance with a fixed-time convergence. Then, based on the obtained disturbance estimation, the FxTSMC is developed based on a fixed-time sliding surface and a fixed-time reaching strategy to form a global fixed-time convergence of the system. The proposed approach is then applied for fault tolerant control of a PUMA560 robot and compared with other state-of-the-art controllers. The simulation results verify the outstanding fault estimation and fault accommodation capability of the proposed fault diagnosis observer and fault tolerant strategy, respectively.  相似文献   

11.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

12.
This paper proposes a new sliding mode observer for fault reconstruction, applicable for a class of linear parameter varying (LPV) systems. Observer schemes for actuator and sensor fault reconstruction are presented. For the actuator fault reconstruction scheme, a virtual system comprising the system matrix and a fixed input distribution matrix is used for the design of the observer. The fixed input distribution matrix is instrumental in simplifying the synthesis procedure to create the observer gains to ensure a stable closed-loop reduced order sliding motion. The ‘output error injection signals’ from the observer are used as the basis for reconstructing the fault signals. For the sensor fault observer design, augmenting the LPV system with a filtered version of the faulty measurements allows the sensor fault reconstruction problem to be posed as an actuator fault reconstruction scenario. Simulation tests based on a high-fidelity nonlinear model of a transport aircraft have been used to demonstrate the proposed actuator and sensor FDI schemes. The simulation results show their efficacy.  相似文献   

13.
In this paper, we study the problem of network-based synchronization of chaotic systems in Takagi–Sugeno (T–S) fuzzy form, in which the master and slave fuzzy chaotic systems are connected with a continuous-time controller through a network. In all communication channels, asynchronous samplings and external disturbances are considered. The asynchronously sampled state information of the master and slave systems received in the controller is treated by designing an observer for estimating the states of the master system. Then, based on the observation result, the problem of asynchronous samplings between the slave-controller and controller-slave channels is solved in two different cases. Sufficient conditions for the existence of the desired observer and controllers for each asynchronous cases are presented in the form of linear matrix inequalities. An numerical example is given to illustrate the validity and potential of the proposed new design techniques.  相似文献   

14.
This paper addresses the state observation and unknown input estimation of a class of switched linear systems with unknown inputs. This class of systems may have modes in which the state is not fully observable. A state transformation allows implementing two suitable reduced-order observers. The first one, based on second order sliding mode techniques, is proposed to reconstruct the discrete state in the presence of unknown inputs. The second one, based on gathering partial information from individual modes of the switched system and on higher order sliding mode techniques, is introduced to estimate the continuous state. Then, the observer injection signal of the first second order sliding mode observer is used to estimate the unknown inputs. Simulation results highlight the efficiency of the proposed method.  相似文献   

15.
In this paper, a composite fault tolerant control (CFTC) with disturbance observer scheme is considered for a class of stochastic systems with faults and multiple disturbances. The disturbances are divided into two parts. One represents the stochastic disturbance with partial known information which is formulated by an exogenous system. The other is independent Wiener process. A stochastic disturbance observer is designed to estimate exogenous disturbance. To make the first type of disturbance can be rejected and the fault can be diagnosed, a composite fault diagnosis observer with disturbance observer is constructed. Furthermore, a composite fault-tolerant controller is proposed to compensate disturbances and faults. Finally, simulation examples are given to demonstrate the feasibility and effectiveness of the proposed scheme.  相似文献   

16.
In this paper, a robust actuator fault diagnosis scheme is investigated for satellite attitude control systems subject to model uncertainties, space disturbance torques and gyro drifts. A nonlinear unknown input observer is designed to detect the occurrence of any actuator fault. Subsequently, a bank of adaptive unknown input observers activated by the detection results are designed to isolate which actuator is faulty and then estimate of the fault parameter. Fault isolation is achieved based on the well known generalized observer strategy. The simulation on a closed-loop satellite control system with time-varying or constant actuator faults in the form of additive and multiplicative unknown dynamics demonstrates the effectiveness of the proposed robust fault diagnosis strategy.  相似文献   

17.
A sliding mode observer in the presence of sampled output information and its application to robust fault reconstruction is studied. The observer is designed by using the delayed continuous-time representation of the sampled-data system, for which sufficient conditions are given in the form of linear matrix inequalities (LMIs) to guarantee the ultimate boundedness of the error dynamics. Though an ideal sliding motion cannot be achieved in the observer when the outputs are sampled, ultimately bounded solutions can be obtained provided the sampling frequency is fast enough. The bound on the solution is proportional to the sampling interval and the magnitude of the switching gain. The proposed observer design is applied to the problem of fault reconstruction under sampled outputs and system uncertainties. It is shown that actuator or sensor faults can be reconstructed reliably from the output error dynamics. An example of observer design for an inverted pendulum system is used to demonstrate the merit of the proposed methodology compared to existing sliding mode observer design approaches.  相似文献   

18.
Actuator fault diagnosis for a class of bilinear systems with uncertainty   总被引:1,自引:0,他引:1  
In this paper, the actuator fault diagnosis problem for a class of bilinear systems with uncertainty is discussed. The system is transformed into two different subsystems. One is not affected by actuator fault, so an adaptive observer can be designed such that, under certain conditions, the observer error dynamics is stable. The other whose states can be measured is affected by the faults. The observation scheme is then used for model-based fault diagnosis. Finally, an example of a semiactive suspension system is used to illustrate the applicability of the proposed method.  相似文献   

19.
In the paper, a distributed sensor fault detection and isolation scheme is presented for a network of second-order integrators. A new distributed control law is developed to achieve formation of the system. By using the integration information of distributed formation errors, the control law improves the robustness of the formation. A distributed observer is then designed in each vehicle based on the closed-loop dynamic model of the vehicle. Each vehicle updates the states of the distributed observer by employing the measurements of itself and the transmitted state estimations from its neighbors. Based on the distributed observer, a distributed fault detection observer and a distributed fault isolation observer are designed. The presented distributed fault detection observer in each vehicle is able to be sensitive to the faults of all vehicles in the system. By using the distributed fault isolation observers, each vehicle is able to be sensitive to the faults of itself, its neighbors and its neighbors’ neighbors and to be robust to the faults of other vehicles. Although the fault isolation of the proposed scheme is simple, computation loads of the scheme are lower than the current ones since only the model of the individual vehicle is used. Finally, the effectiveness of the control law and the fault diagnosis scheme is demonstrated by simulations and real-time experiments carried out based on a formation of three quadrotors.  相似文献   

20.
In this paper, the global output feedback tracking control is investigated for a class of switched nonlinear systems with time-varying system fault and deferred prescribed performance. The shifting function is introduced to improve the traditional prescribed performance control technique, remove the constraint condition on the initial value, and make the constraint bounds have more alternative forms. To estimate the unmeasured state variables and compensate the system fault, the switched dynamic gain extended state observer is constructed, which relaxes the traditional Lipschitz conditions on the nonlinear functions. Based on the proposed observer, by constructing the new Lyapunov function and using the backstepping method, the global robust output feedback controller is designed to make the output track the reference signal successfully, and after the adjustment time, the tracking error enters into the prescribed set. The stability of the system is analyzed by the average dwell time method. Finally, simulation results are given to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号