首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
出“活”题 ,考能力 ,是近十余年来数学高考命题改革的思路和措施。死记硬背书本知识 ,不是当代教育的能力观 ,能将书本知识融汇贯通、综合应用 ,才符合素质教育的新要求。着眼于考查能力素质的高考 ,试题当然要出“活”。笔者摘题诌议 ,以求启迪。1 课本是创造“活”题的基础和源泉例 1 如图 ,已知平行六面体ABCD -A1B1C1D1的底面ABCD是菱形 ,且∠C1CB =∠C1CD =∠BCD=60°。(Ⅰ )证明 :C1C⊥BD ;(Ⅱ )假定CD =2 ,CC1=3 / 2 ,记面C1BD为α ,面CBD为 β,求二面角α -BD-β的平面角的余弦值 ;(Ⅲ )当…  相似文献   

2.
平面几何学习中 ,一题多证是从不同角度应用已有知识分析综合。对同一问题通过不同路径得出相同结论的证题过程。这种思路利在跳跃思维和创新精神的培养。例题 :求证 :菱形对角线交点到各边距离相等 (九年义务教材初中几何第二册P1 60 7题 )已知 :如图 ,四边形ABCD是菱形 ,对角线AC与BD直交于O ,OE⊥AB ,OF⊥CB ,OG⊥CD ,OH⊥AD ,垂足分别为E、F、G、H。求证 :OE =OF =OG =OH .证法 1 :(直接证三角形全等 )∵四边形ABD是菱形。∴AO =A0 =OC =CO .∴∠HAO =∠EAO =∠FCO =∠GCO…  相似文献   

3.
对于线段的和差倍分在几何论证中视为简单的一类 ,但方法选得不当其证明常带来困难 ,这里介绍利用截长补短 ,加倍折半法转化为证明线段的相等 ,特举例说明。例 1 在梯形ABCD中 ,AB∥DC ,AD⊥AB ,∠BCD平分线CM过AD的中点M ,求证 :AB +CD =BC。图 (1 )证一 :如图 (1 )在CB上截取CN =CD ,连结MN ,则△CDM≌△CNM ,∴∠ 3 =∠DMN =MD =MA ,连结MB则Rt△BMN≌Rt△BMA∴NB =AB即AB +CD =CN +NB =BC图 (2 )这里用的截长法。证二 :如图 (2 )延长BA ,CM交于N∵AB…  相似文献   

4.
求圆中锐角三角函数值的问题 ,涉及的知识点较多 ,综合性较强 ,解法也较灵活 .每年的中考中都有这种类型的试题 ,用以考查学生综合运用知识的能力 .一、转移线段比例 1 如图 1,P为⊙O外一点 ,PA切⊙O于点A ,PA =8,直线PCB交⊙O于C、B两点 ,且PC =4 ,AD⊥BC于D ,连结AB、AC ,∠ABC =α ,∠ACB =β .求sinαsinβ的值 .(2 0 0 1年湖北省沙市中考题 )思路分析 在Rt△ABD和Rt△ACD中 ,sinα =ADAB,sin β =ADAC.∴ sinαsin β=ADAB·ACAD=ACAB.故只需求 A…  相似文献   

5.
文 [1 ]指出了我国 2 0 0 0年高中数学联赛一道几何题与IMO -1 8的几何题的联系 ,并给出其三角证法。很显然 ,前者是后者的引申。反过来 ,在解题的思路上 ,前者就可以化归为后者 ,并从中得到解题的启示。先来看这两个题目 :命题 1 ( 2 0 0 0年联赛题 ) 如图 1 ,在锐角三角形图 1ABC的BC边上有E、F两点 ,使∠BAE =∠CAF ,作FM⊥AB ,FN⊥AC(垂足为M、N) ,延长AE交△ABC外接圆于D ,证明 :四边形AMDN与△ABC的面积相等。题中当角α =∠A/2时 ,就变成了下题 :命题 2 (IMO -2 8) 在锐角三角形ABC…  相似文献   

6.
全等三角形是能够完全重合的两个三角形 ,它们的对应边相等 ,对应角相等 .巧用这两个相等 ,可顺利地解答一些几何求值和证明问题 .例 1 如图 1 ,在△ABC中 ,∠ACB =90° ,AC=BC ,AE是BC边上的中线 ,过C作CF⊥AE ,垂足是F ,过B作BD⊥BC交CF的延长线于D ,AC =1 2 .求BD的长 . ( 1 997年浙江省中考题 ) 解 ∵ ∠ACB =90°,CF⊥AE于F ,∴ ∠ 1 =90° -∠ 3=∠ 2 .在△DBC和△ECA中 ,∵ ∠DBC =∠ECA =90° ,BC =AC ,∠ 1 =∠ 2 ,∴ △DBC≌△ECA .∴ BD =CE .∵ C…  相似文献   

7.
对于某些几何证明问题 ,同学们可以从线段垂直平分线入手 ,常可找到解决问题的捷径。一、直接利用已知的线段垂直平分线图 1.例 1 如图 1,AD平分∠BAC ,EF是AD的垂直平分线交AD于E ,交BC的延长线于F ,连AF ,求证 :∠B =∠CAF证明 :∵EF是AD的垂直平分线∴FA =FD ∠FDE =∠FAE∴∠B +∠ 1=∠CAF +∠ 2∵∠ 1=∠ 2∴∠B =∠CAF .二、挖掘利用隐含的线段垂直平分线例 2 如图 2 ,△ABC中 ,AD平分∠BAC ,CE⊥AD于O ,CE是∠DEF的平分线 ,求证EF∥BC .图 2证明 :在△AEO和…  相似文献   

8.
一、选择题 (每小题 3分 ,共 30分 )1.如图 1,四边形ABCD是⊙O的内接四边形 ,∠ABC =115° .那么 ,∠AOC等于 (   ) .(A) 115°   (B) 12 0°   (C) 130°   (D) 135°图 1图 22 .如图 2 ,以BC为直径 ,以O为圆心作半圆 ,点A、F把半圆三等分 ,AD⊥BC于点D ,且BC =12 .连结BF交AD于点E .则AE的长为 (   ) .(A) 2 3(B) 33(C) 3(D) 32 33.已知Rt△ABC外切于⊙O ,∠ACB =90° ,∠BOC =10 5° ,BC =2 0cm .那么 ,Rt△ABC的面积是(   ) .(A) 180 3cm2 (B) 2 0 0 3cm…  相似文献   

9.
一、1.23  2 .(a -b + 1) (a -b - 1)  3.6  4 .y2 -y - 2 =0  5 .1<d <9  6 .12 5 %  7.4 5mm 8.392x - 392x + 4 0 =1  9.y =90x  10 .2 6二、11.D  12 .C  13.B  14 .A  15 .C  16 .A 17.B  18.D  19.C  2 0 .B三、2 1.6 .2 2 .在梯形ABCD中 ,∵AB∥CD ,AD =BC ,∴AC =BD .∵DC =CD ,∴△ADC≌△BCD .∴∠ACD =∠BDC .故OD =OC .图 1四、2 3.如图 1,连结PO并延长 ,交⊙O于点C、D .根据切割线定理的推论 ,有PA·PB =PC·PD .∵PB =PA +…  相似文献   

10.
一、填空题1 在△ABC中 ,∠C =90°,∠A =32°,那么∠B =.(2 0 0 1年广西壮族自治区中考题 )2 在Rt△ABC中 ,若锐角A的平分线与锐角B的邻补角的平分线相交于点D ,则∠ADB =. (2 0 0 1年河北省中考题 )3 如图 1,在△ABC中 ,∠B =∠C ,FD⊥BC ,DE⊥AB ,∠AFD =15 8° ,则∠EDF =度 . (2 0 0 1年天津市中考题 )4 长度为 5cm ,7cm ,10cm的三条线段能否组成三角形 ?答 :.(2 0 0 1年山东省滨州市中考题 )图 1图 2   5 如图 2 ,AD∥BC ,E在AB的延长线上 .若∠ 1=6 0° ,∠ 2 =5 0°,则∠A…  相似文献   

11.
若在任意三角形的各边向外 (内 )作正三角形 ,则它们的中心构成一个正三角形。此即所谓拿破仑定理。本文将该定理弱化为特例 :当△ABC退化为一条线段时 ,便有如下命题 :命题 如图 ,C为线段AB上任一点 ,△ACE、△BCF、△ABD是正三角形 ,O1、O2 、O3 分别是它们的中心。则△O1O2 O3 是正三角形。证明 延长AE、BF交于D′,连结AO3 、BO3 ,AO1、BO2 ,延长AO1、BO2 交于O4 ,则O4 是正△ABD′的中心 ,由对称性知 ,四边形AO3 BO4 是菱形。连结O3 O4 ,由题意知 ,∠O4 AO3 =6 0°。故△AO3 …  相似文献   

12.
试题 :四棱锥P—ABCD的底面是边长为a的正方形 ,PB⊥面ABCD .(1 )若面PAD与面ABCD所成的二面角为 60°,求这个四棱锥的体积 ;(2 )证明无论四棱锥的高怎么变化 ,面PAD与面PCD所成的二面角恒大于 90°.(1 )解法略(2 )证明 :不论棱锥的高怎样变化 ,棱锥侧面PAD与PCD恒为全等三角形 .作AE⊥DP ,垂足为E ,连结EC ,则△ADE≌△CDE ,所以AE =CE ,∠CED=90°,故∠CEA是面PAD与面PCD所成的二面角的平面角 ,PD⊥面ACE .(下面用三种方法来证明∠CEA是钝角 )证法 1 如图 1 ,因为…  相似文献   

13.
试题 :四棱锥P-ABCD的底面是边长为a的正方形 ,PB ⊥面ABCD .(1 )若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积 ;(2 )证明无论四棱锥的高怎么变化 ,面PAD与面PCD所成的二面角恒大于 90°.(1 )解法略(2 )证明 :不论棱锥的高怎样变化 ,棱锥侧面PAD与PCD恒为全等三角形 .作AE⊥DP ,垂足为E ,连结EC ,则△ADE≌△CDE ,所以AE =CE ,∠CED =90°,故∠CEA是面PAD与面PCD所成的二面角的平面角 ,PD ⊥面ACE(下面用三种方法来证明∠CEA是钝角)证法一 :∵DE ⊥面CE…  相似文献   

14.
几何“a2 =bc”型的命题 ,综合性强 ,证法灵活 ,是训练初中学生思维能力的重要题型 ,也一直是中考的“热点” .本文举例说明此类题型常用的证明方法利用共边相似三角形证明     图 1例 1 如图 1,已知⊙O与⊙A相交于B、C两点 ,经过点A ,过A作⊙O的弦AF交⊙A于E ,交BC于D .求证 :AB2 =AD·AF .证明 连结BF ,AC ,∵AB =AC ,∴∠ABC =∠AFB .又∵∠BAD =∠FAB ,∴△ABD∽△AFB ,有   ABAF =ADAB,故  AB2 =AD·AF .2 利用等高相似三角形证明     图 2例 2  …  相似文献   

15.
题目 如图 1 ,已知四边形ABCD外接圆⊙O的半径为 2 ,对角线AC与BD的交点为E ,AE =EC ,AB =2AE ,BD =2 3.求四边形ABCD的面积 .( 2 0 0 0年全国初三数学竞赛题 )这是一道综合性与技巧性都较强的试题 ,解题的思路开阔 ,方法较多 .图 1图 2  解法一 如图 2 ,∵ AB =2AE ,AE =EC ,∴ AB2 =2AE2 =AE·2AE =AE·AC .∴  ABAC =AEAB.又∠BAE =∠CAB ,∴ △ABE∽△ACB .∴ ∠ABE =∠ACB .∵ ∠ACB =∠ADB ,∴ ∠ABE =∠ADB .∴ AB =AD .作直径…  相似文献   

16.
《中学数学教学参考》1 999年第 1 2期第 1 8页之例 3,是一道几何证明题范例 ,但原文是利用很复杂的三角恒等式来解决的 .下面给出该例题之简短几何证明 ,供读者参考 .原题 已知ABCD是正方形(图 1 ) ,在BC边上任取一点E ,又AF平分∠DAE交CD于F .求证 :AE =BE DF .几何证法 :以A为轴心 ,将△ADF旋转 90°到△ABG的位置(图 2 ) .显然 ,G点在CB的延长线上 .设∠DAF =α ,则∠DFA =90° -α ,且∠FAE=α .但∠FAG =90°,故∠EAG=90° -α .而∠BGA =∠DFA ,因此∠BGA =∠EAG ,所以…  相似文献   

17.
初中《几何》第三册第 1 2 9页例 4:如图 1 ,⊙O1 和⊙O2 外切于点A ,BC为⊙O1 、⊙O2 的外公切线 ,B、C为切点 .求证 :AB⊥AC .证明略 .我们把上题中的△ABC叫做切点三角形 ,显然 ,切点三角形是直角三角形 .巧用切点三角形的这个性质能妙证许多几何问题 ,下面举例说明 .一、用于证明某条线段是某圆的直径图 1图 2  例 1 如图 2 ,⊙O1 、⊙O2 外切于点A ,BC切⊙O1 、⊙O2 于B、C ,连结CA并延长交⊙O2 于D .求证 :BD是⊙O1 的直径 .分析 连结AB ,则△ABC是切点三角形 ,故∠BAC =90°.从而∠BA…  相似文献   

18.
利用比值参数解面积题 ,快捷简便 ,特别是求解那些较难的中考压轴题、数学竞赛题 ,更起到了事半功倍的效果。1 基本原理设D是△ABC中BC边上的一点 (图 1 ) ,已知BD/BC =K(K为 0 <K <1 )则容易证明 :S△ABDS△ABD =KS△ADCS△ABC =1 -KS△ABDS△ADC =K1 -K式中的参数K是两条线段的比值 ,故称比值参数。比值参数K的设法有许多 ,可得到诸多的面积公式。例 :四边形ABCD中 ,AC交BD于O(图 2 )若AO/OC =K ,则 S△ABDS△BCD=K从而得到 :S△AOD·S△BOC =S△AOB·S…  相似文献   

19.
题目 如图 1 ,在△ABC中 ,∠A =60° ,AB >AC ,点O是外心 ,两条高BE、CF交于H点 .点M、N分别在线段BH、HF上 ,且满足BM =CN .求 MH NHOH 的值 .由BM =CN及线段的差分关系 ,得MH NH =BH -CH .因此 ,本题等价于在已知条件下 ,求 BH -CHOH 的值 .下面给出几种解法 ,供参考 .解法 1 .如图 2 ,在AB上截取AD =AC ,则△ADC为等边三角形 .从而∠BDC =1 2 0°.∵A、F、H、E四点共圆 .∴∠BHC =1 80° -∠A =1 2 0°由外心张角公式 ,得∠BOC=2∠A =1 2 0°∴∠BDC =∠…  相似文献   

20.
1 分析法分析法就是从题目的结论出发 ,逐步找出使结论成立的原因 ,直到找出所用的原因恰好是题目的已知条件或所学过的定理 ,再按分析的思路从后往前把证题过程写出来 .图 1例 1 如图 1 ,△ABC中 ,∠A的平分线AD交BC于D ,⊙O过点A且与BC相切于D ,与AB、AC分别相交于E、F ,AD与EF相交于G .求证 :AF·FC =GF·DC .( 2 0 0 1 ,河南省中考题 )证题思路 :AF·FC =GF·DC AFDC=GFFC △DCF∽AFG(连结DF) ∠CDF =∠FAD∠C =∠AFG EF∥BC ∠EFD =∠CDF ∠EFD =…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号