首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

2.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

3.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

4.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

5.
三角形中位线定理说明了三角形的中位线与第三边的位置关系和数量关系.利用这两种关系,可证明若于与线段中点有关的问题.例1 如图1,△ABC中,BD平分∠ABC,AD⊥BD于D,E为Ac的中点.求证:DE//BC.分析由E为AC的中点,若延长AD交BC于F,那么要证DE//BC,则只要证D为AF的中点.这只要证△BDA≌△BDF.∵AD⊥BD,∴∠BDA=∠BDF=90°.∵∠1=∠2,BD=BD,∴∠BDA≌△BDF.  相似文献   

6.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

7.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

8.
角平分线是指把一个角分成两个相等的角的射线.关于角平分线具有如下重要的性质:角平分线上的点到角的两边的距离相等.对于一些含角平分线条件的证明问题,巧用这个性质,能简化解题过程,达到事半功倍的效果例1如图,△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F,求证:EB=FC.证明:∵AD平分∠BAC,又DE⊥AB于E,DF⊥AC于F,∴DE=DF.在△BDE和△CDF中,∵∠DEB=90°,∠DFC=90°,DE=DF,BD=CD,∴Rt△BDE≌Rt△CDF(HL).∴EB=FC例2如图,△ABC中,O为∠A、∠B平分线的交点,OD⊥BC于D,OE⊥…  相似文献   

9.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

10.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

11.
651.在凸四边形ABCD中,边AB、DC的延长线交于点E,边BC、AD的延长线交于点F,若AC上BD于G,求证:∠EGC=∠FGC.证:如图1,过E、F分别作直线BD的垂线.垂足分别为M、N.由AG⊥BD知ME∥AG∥NF,∴MG/BG=AE/AB,NG/DG=AFAD.  相似文献   

12.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

13.
1 一个假命题命题:任一个三角形是等腰三角形.已知:△ABC(如图1).求证:△ABC 为等腰三角形.证明:如图2,作 AB 的中垂线 MD 交∠ACB 的平分线于 D 点,分别作 DE⊥BC,垂足为 E,DF⊥AC,垂足为 F,连结 BD、AD,则易知:DE=DF,BD=AD.  相似文献   

14.
一、利用定义求角例1已知四面体ABCD,AC⊥BD,且△ABC的面积为15,△ACD的面积为9.若AC=6,BD=7.求二面角B-AC-D的大小.解如图1,作BE⊥AC于E,连DE.∵AC⊥BD,AC⊥BE,∴AC⊥平面BDE,AC⊥DE.∴∠BED是二面角B-AC-D的平面角.∵S△ABC=15,S△ACD=9,AC=6,∴15=12×6×BE,则BE=5;9=21×6×DE,则DE=3.在△BDE中,由余弦定理可得cos∠BED=-21,故∠BED=120°.二、利用垂线求角例2如图2,正方体ABCD-A1B1C1D1的棱长为1,P是AD的中点,求二面角A-BD1-P的大小.解过P作BD1及AD1的垂线,垂足分别是E,F,连EF.由于AB⊥平…  相似文献   

15.
例1如图1,在△ABC中,AB>AC,AD是BC边上的中线.求证:∠BAD<∠CAD.图1分析注意到AD是BC边上的中线,中线加倍是常见的添辅助线的方法.然后把研究对象集中在△ABE中,由大边对大角,将问题得以解决.证明延长AD到点E,使DE=AD,连结BE,则D是△ADC与△EDB的对称中心,BE=CA,∠E=∠CAD.∵AB>AC,∴AB>BE,∴∠BAD<∠E,从而∠BAD<∠CAD.例2如图2,在△ABC中,D是BC边的中点,ED⊥DF,EF分别交AB、AC于E、F两点.求证:BE+FC>FE.图2分析能否将BE、FC、EF移到同一三角形考察线段不等关系?利用对称性作图是可以实施的,于是问…  相似文献   

16.
<正>等腰三角形具有"三线合一"的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.如图1,在△ABC中,AB=AC,D是BC上一点.(1)如果∠1=∠2,那么AD⊥BC,BD=CD;(2)如果BD=CD,那么∠1=∠2,AD⊥BC;(3)如果AD⊥BC,那么∠1=∠2,BD=CD.上述性质中,共存在4个关系式:AB=AC,∠1=∠2,AD⊥BC,BD=CD.而改写后的每条性质都有两个条件,且都有一个条件是"AB=AC".反过来,在关系式∠1=∠2,AD⊥BC,  相似文献   

17.
平行四边形是一种特殊的四边形,它具有很多独特的性质.在解答一些与线段有关的证明问题时,从构造平行四边形入手,常可化难为易.例1 如图1,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,BE=CF,EF交BC于D.试说明DE=DF. 解 过E作EG∥AC交BC于G,连结CE,FG,则∠EGB=图1∠ACB.因为AB=AC,所以∠ABC=∠ACB=∠EGB,所以EG=BE. 因为BE=CF,所以EG=CF.又EG∥CF,所以四边形EGFC为平行四边形.因此DE=DF.例2 如图2,△ABC中,D,E分别为AB,AC的中点.说明:DE∥BC.图2解 延长DE到F,使FE=DE,连结AF,CF,CD.因为…  相似文献   

18.
平几第二册第65页第2题: 已知:△ABC中,AB=15,AC=20,高AD=12,求角平分线AE的长。人民教育出版社出版的《教学参考书》是这样解答的:如图1,∵AD是高,AB=15,AD=12,∴BD=9,同理求得CD=16,∴BC=25。又AE平分∠BAC,∴AB:AC=BE:EC,解得 BE=75/7,∴DE=BE-BD=12/7,  相似文献   

19.
线段的垂直平分线(中垂线)的性质定理及其逆定理在解题中有着广泛的应用,现举例说明,供同学们参考.一、用于求线段长例1如图1,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于D、E.若AB=14,△BCD的周长为22,求BC的长.分析:由DE是AC的垂直平分线,得DA=DC.则BD+DC=BD+DA=AB=14.又BC+BD+DC=22,故BC=22-(BD+DC)=22-14=8.(具体证明过程请读者自行完成,下同)二、用于求角的度数例2如图2,AB⊥CD于B,AD的垂直平分线CF分别交AB、AD于E、F,EB=EF,求∠A的度数.分析:由CF是AD的垂直平分线想到连结DE,则AE=DE,故∠A=∠1…  相似文献   

20.
几何综合题大多是圆与平行线、三角形、四边形、相似三角形、锐角三角函数等知识的综合运用 .同学们在总复习阶段 ,适量地研究一些不同类型综合题的解法 ,有助于对几何图形的识别 ,有助于加强对重要定理的理解 ,有助于所学知识的融会贯通 ,更有助于对不同类型习题解题规律的掌握 .图 1例 1 如图 1,AC切⊙O于点A ,AB、AD为⊙O的弦 ,AB =AC ,AD∥BC ,BC交⊙O于点E ,AO的延长线交BE于F ,AO与DE交于G .求证 :(1)四边形ADEC是平行四边形 ;(2 )EG2 =18CF·CB .证明 :(1)由已知 ,有∠B =∠C .又∠B =∠D ,则∠D =∠C .因为AD…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号