首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
例已知关于x,y的方程组{x-y=m,2x+y=m+1.的解满足x+y=2,求m的值.解法1解关于x,y的方程组{x-y=m,2x+y=m+1得{x=(2m+1)/3,y=(-m+1)/3.代入x+y=2,得  相似文献   

2.
一堂“基本不等式”的习题课上 ,老师提出这样一个问题 1:“若 x,y∈ R+,且 x + y =1,则 1x + 1y的最小值是 4,若 x,y∈ R+,且 1x + 1y =1,则 x+ y的最小值也是 4.那么若 x,y∈ R+,且 x +y = 1,则 1x + 4y 的最小值是不是与若 x,y∈R+,且 1x + 4y =1,则 x + y的最小值相同 ?为什么 ?”有的学生很快有了答案 ,有的学生怎么也做不出结果来 .老师问那些做出结果的同学 ,答案相同吗 ?学生 [1]说 :相同 .老师又问 :你是怎样求的 ?学生 [1]说 :因为 x,y∈ R+,且 x + y =1,所以 1x+ 4y=(1x+ 4y) (x + y) =5 + yx+4xy ≥ 5 + 2 yx .4xy =9(等号成…  相似文献   

3.
一、要注意不等式成立的条件例1已知x,y缀R+,且1x+4y=1,求x+y的最小值.错解∵x,y∈R+,∴0<1x·4y≤眼12穴1x+4y雪演2=14,即xy≥16.∴x+y≥2xy姨≥216姨=8,∴x+y的最小值是8.分析上面解法中,连续进行了两次不等式变形:x+y≥2xy姨与2xy姨≥216姨,且这两个不等式中的等号不能同时成立.因为第一个不等式当且仅当x=y时等号成立,第二个不等式当且仅当1x=4y时等号成立,即只有x=2且y=8时等号成立.因此,x+y不可能等于8.正解∵1x+4y=1,∴x+y=(x+y)·穴1x+4y雪=yx+4xy+5≥2×yx·4xy姨+5=9.上式当且仅当yx=4xy,即y=2x时等号成立.将1x+4y=1与y=2x联立,…  相似文献   

4.
文 [1]用函数性质证明了第 31届西班牙数学奥林匹克第 31题 :如果 (x+x2 +1) (y+y2 +1) =1,那么 x+y=0 .该题可作如下的推广 :如果 (x+x2 +m) (y+y2 +m) =m,其中 m∈ (0 ,+∞ ) ,那么 x+y=0 .下面用构造法给出简证 .思路 1——构造对偶式证明 1 由已知 ,m>0 ,(x+x2 +m ) (y+y2 +m) =m,1令 (x- x2 +m) (y- y2 +m) =n,21× 2得 (- m) (- m) =mn,∴ n=m,即有 (x- x2 +m) (y- y2 +m) =m.3由 1得 x+x2 +m=my+y2 +m=- (y- y2 +m) . 4由 3得 x - x2 +m =my- y2 +m=- (y+y2 +m) . 54 +5得 2 x=- 2 y,∴x+y=0 .思路 2——构造等比数列证明 2  m >0 …  相似文献   

5.
基础篇课时一 一次方程组有关概念及解法诊断练习一、填空题1.在方程:xy=4,x+y=2,x2-y=3,x+y=z,x+1y=1中,属于二元一次方程的是.2.方程3x+2y=-1的一个解中x=2,则这个解中y=.3.已知方程12x-13y=1,用含x的代数式表示y=.4.在求解二元一次方程组x=2y,2x-3y=4时,用的方法消去未知数x简便,消去未知数x后,就把问题转化为问题.二、选择题1.若关于x,y的二元一次方程2kx+y=1的解是x=2,y=-7.则k的值为(  )(A)4. (B)2. (C)3. (D)-2.2.下列方程组中是二元一次方程组的是(  )(A)x+y=1,xy=3.  (B)3x+y=2,2y+z=5.(C)x+3y=4,x+1y=3.(D)x=3,2x-3…  相似文献   

6.
重视变式训练 激活思维能力--一类不等式问题的统一解法   总被引:1,自引:0,他引:1  
1 问题的出现已知x、y∈(0 ,+∞) ,且x+2 y=1,求1x +1y的最小值.学生甲:∵x >0 ,y>0x +1x ≥2 ,2 y+1y ≥2 2 ,∴x+2 y+1x +1y ≥2 +2 2 .∵x +2 y=1,∴1x +1y ≥1+2 2故1x +1y 的最小值为1+2 2 .学生乙:∵x >0 ,y>01=x+2 y≥2 x·2 y,∴xy≤18.因此 1x +1y ≥2 1xy ≥2 8=4 2 .故1x +1y 的最小值为4 2 .以上是学生解这道题目时的两种典型错解,错误的根源在于多次使用了均值不等式,而等号不能同时取到.2 问题的解决本题的条件是正数x、y的一次齐次式等于常数,即x+2 y=1,要求最小值的式子的分母是关于x和y的一次多项式,如果能把1x +1y 化…  相似文献   

7.
有些同学在做不等式的习题时,曾因一道题目的两种不同解法而争论不休,现把他们的解法原原本本地写下,仔细分析一下,以防再犯类似错误.题目:设x、yR+且x+2y=1,求1x+1y的最小值.解法一:∵x,yR+且x+2y=1∴1=x+2y叟22xy姨穴1雪即xy燮18,从而1xy姨叟8姨=22姨(2)∴1x+1y叟21xy姨=21xy姨∴1x+1y叟2×22姨=42姨,∴1x+1y的最小值为42姨.解法二:∵x,yR+且x+2y=1∴1x+1y=x+2yx+x+2yy=3+2yx+xy叟3+22yxxy姨=3+22姨∴1x+1y的最小值为3+22姨.以上两种解法看似都正确,其实不然.解法一是错的,而解法二是对的.那么解法一究竟错在哪里呢?还是让我们回…  相似文献   

8.
抛物线有很多的性质 ,下面通过一组例题及其变题 ,来揭示抛物线动弦的“动人”性质 .例 1 直线 y =x -2与抛物线 y2 =2 x相交于点 A、B,求证 :OA⊥ OB.图 1解 :设点 A( x1 ,y1 ) ,点 B( x2 ,y2 )由 y =x -2y2 =2 x消去 y得 x2 -4 x +4 = 2 xx2 -6x +4 =0x1 +x2 =6,x1 x2= 4所以 y1 y2 =( x1 -2 ) ( x2 -2 ) =x1 x2 -2 ( x1 +x2 ) +4 =4-12 +4 =-4所以 k OA =y1 x1,k OB =y2x2所以 k OA .k OB =y1 x1.y2x2=-44=-1所以 OA⊥ OB.变题 1 设 A( x1 ,y1 ) ,B( x2 ,y2 )在抛物线y2 =2 px ( p >0 )上 ,OA⊥ OB ( O为原点 )( 1)求证 :y1…  相似文献   

9.
基本问题 :已知圆的方程为 x2 + y2 =r2 ,求过圆上一点 P0 (x0 ,y0 )的圆的切线方程。解法 1:若 y0 ≠ 0 ,则所求切线斜率存在 ,设所求方程为 y- y0 =k(x- x0 ) ,代入 x2 + y2 =r2 得 :(1+ k2 ) x2 + (2 ky0 - 2 k2 x0 ) x+ y0 2 + k2 x0 2 -2 kx0 y0 - r2 =0 ,由判别式△ =0得 :(r2 - x0 2 ) k2 + 2 x0 y0 k+ r2 -y0 2 =0。又 x0 2 + y0 2 =r2 ,∴ y0 2 k0 2 + 2 x0 y0 k+ x0 2 =0。即 (y0 k+ x0 ) 2 =0 ,解得 k=- x0 / y0 。故所求切线方程为 y- y0 =- x0 / y0 (x- x0 ) ,即 x0 x+ y0 y=x0 2 + y0 2 亦即 x0 x+ y0 y=r2 。 1当 y0 =0时 ,…  相似文献   

10.
<正>类型一、根据直线与曲线"相切",巧求参数的值例1(2016年全国Ⅱ卷理科第16题)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=。解析:设直线y=kx+b与曲线y=ln x+2相切于点(x1,y1),则1/x1=k,kx_1+b=ln x_1+2,由此可得b=-ln _k+1 1。设直线y=kx+b与曲线y=ln(x+1)  相似文献   

11.
如果函数y=f(x)有反函数y=f~(-1)(x),那么函数y=f(x+1)的反函数就是y=f~(-1)(x+1)吗? 例已知f(x)=2~x,函数y=g(x)的图象与函数y=f~(-1)(x+1)的图象关于直线y=x对称,求g(2)。  相似文献   

12.
正(2012年高考山东卷·理12)设函数f(x)=1x,g(x)=ax2+bx(a,b∈R,且a≠0)若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a0时,x1+x20,y1+y20B.当a0时,x1+x20,y1+y20C.当a0时,x1+x20,y1+y20D.当a0时,x1+x20,y1+y20分析一:令a=-2,b=3,1x=-2x2+3x,因式分解-(x-  相似文献   

13.
周周练     
第一周二元一次方程组与代入法求解A组一、填空题1.叫二元一次方程,5x-2y=0的解有组.2.对于方程4x+y=3,用x的代数式表示y的结果是;对于方程3x+2y=1,用y的代数式表示x的结果是.3.若x3m-3-2yn-1=5是二元一次方程,则m=,n=.4.二元一次方程4x+y=20的所有正整数解有组5.已知x=2y=-1是方程组4mx-x+y=132x-ny+1=2的解,则2m+3n的值等于.6.已知一4xm+nym-n与23x7-my1+n是同类项,则m=,n=.7.x=2,y=1是方程(ax-by-1)2+|x+by-5|=0的一组解,则a=,b=.8.若方程组x-my=02x+3y=7的解也是方程x-y=1的解,则m=.二、选择题1.方程x-4y=1;x2+y=0;y+z=0;xy=1;x-2y3+y=…  相似文献   

14.
最近,我听了一位教师课题为《曲线方程的求法》的一节课.其中一道例题:求圆心在(2,1),且与x2+y2?3x=0的公共弦所在直线过点(5,?2)的圆的方程.解由已知可设圆的方程为x2+y2?4x?2y+F=0.(1)又x2+y2?3x=0,(2)(1)?(2)得?x?2y+F=0.而直线?x?2y+F=0过点(5,?2),把(5,?2)代入?x?2y+F=0,得F=1.因此所求圆的方程为:x2+y2?4x?2y+1=0.评课会上,有人提出:(1)?(2)所得?x?2y+F=0一定是相交弦吗?若不是,它又是什么呢?本文就此展开讨论.不失一般性,设两个不同的圆22O1:x+y+D1x+E1y+F1=022(D1+E1?4F1>0).(3)22O2:x+y+D2x+E2y+F2=022(D2+E2?4F2>0).(4)(3…  相似文献   

15.
笔者近日在学习和研究圆锥曲线时,发现圆锥曲线与其切线有关的一个优美的性质,现表述如下,以期与同仁分享. 性质1 已知A,B是椭圆C:x2/a2+y2/b2=1(a>b>0)上不同的两点(不同时在坐标轴上,或kOA·kOB≠-b2/a2),O为椭圆C的中心,椭圆C在点A,B处的切线分别与直线OB,OA相交于P,Q两点.则AB∥PQ. 证明:如图1,设A(x1,y1),B(x2,y2).则切线AP,BQ的方程分别为:x1x/a2+y1y/b2=1,x2x/a2+y2y/b2=1.直线OA,OB的方程分别为:y=y1/x1x,y=y2/x2x由方程组{x2x/a2+y2y/b2=1 y=y1/x1x,解得点Q的坐标为xQ=a2+b2+x1/b2x1x2+a2y1y2,yQ=a2+b2+y1/b2x1x2+a2y1y2.  相似文献   

16.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )=1 ,那么 x+ y=0 .分析 注意到式子 x+ x2 + 1 ,y+y2 + 1的结构完全相同 ,我们引进函数f( x) =x+ x2 + 1 .容易知道函数 f( x)具有以下性质 :1 f( x) f( - x) =1 ;2 f( x)在定义域 R上是增函数 .(对于性质 2 ,只需把 f ( x1 ) - f ( x2 )化为 ( x1 - x2 ) x21 + 1 + x22 + 1 + x1 + x2x21 + 1 + x22 + 1,利用 x21 + 1 + x22 + 1 + x1 + x2 >| x1 | + | x2 |+ x1 + x2 ≥ 0即可证得 .)显然 ,原竞赛题就是证明 :如果 f ( x) f ( y) =1 ,那么 x+ y=0 .现在简证如…  相似文献   

17.
近年高中数学联赛有这样一道题 :实数x ,y满足 4x2 - 5xy +4 y2 =5,设S =x2 +y2 ,则 1Smax+1Smin的值为 .下面给出这道题的多种解法 .解法 1 由题设易知S =x2 +y2 >0 ,设x =Scosθy =Ssinθθ为参数 ,代入 4x2 - 5xy+4y2 =5,得 4Scos2 θ- 5Ssinθcosθ +4Ssinθ=5,所以sin2θ =8S - 105S ,于是有|8S - 105S |≤ 1,所以1013≤S≤ 103,所以Smax =103,Smin =103,所以 1Smax+1Smin=310 +1310 =85.解法 2 由x ,y为实数可知 :x2 +y2 ≥ 2 |xy|所以 - x2 +y22 ≤xy≤ x2 +y22 .又 4x2 - 5xy +4 y2 =5,得 5xy =4x2 +4 y2 - 5所以4x2 …  相似文献   

18.
一、填空题1.已知方程x+(1/2)y=0,用x的代数式表示y,则y=——. 2.当x=——时,方程3x+2y=6中,y=3. 3.在x=1,y=1;x=2,y=-1;x=4,y=-5.中,方程组2x+y=3,3x-4y=0 的解是——.  相似文献   

19.
在初中代数的习题中 ,常会遇到一些特殊的高次方程 ,如用常规方法来解 ,过程一般较为繁琐 ,且容易出错。现例举出来 ,供同学们参考。一、中值变换例 1 解方程 :x4+ (x - 2 ) 4 =82 .分析 :直接展开较繁 ,取x与 (x - 2 )的算术平均数设为 y ,进行中值变换。解 :令x - 1 =y ,则原方程变为 :( y + 1 ) 4 + ( y - 1 ) 4 =82展开合并得2 y4+ 1 2 y2 + 2 =82 即 y4+ 6y2 - 40 =0∴ ( y2 + 1 0 ) ( y2 - 4) =0∴y2 =- 1 0 (舍去 ) ,y2 =4 ∴y =± 2∴x - 1 =± 2 ∴x1 =3 x2 =- 1二、倒数变换例 2 解方程 :x4- 3x3- 2x2 - 3x + 1 =0 .分析 :…  相似文献   

20.
<正>求区域的面积是高中数学中的常见问题,本文谈谈由运动变化产生的区域及其面积的求解方法.一、由图形的平移形成的区域例1若点集A={(x,y)|x2+y2≤1},B={(x,y)|-1≤x≤1,-1≤y≤1},则(1)点集P={(x,y)x=x1+1,y=y1+1,(x1,y1)∈A}所表示的区域的面积为;(2)点集M={(x,y)x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号