首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study investigated the conceptual pathways of 19 Grade 11 introductory chemistry students (age 16–17) as they participated in a multirepresentational instruction on the particulate nature of matter (PNM). This study was grounded in contemporary conceptual change theory, in particular, research on students' conceptual pathways that focuses on the interaction between students' existing conceptions and instruction, which might give rise to observing multiple paths. This mixed method study combined a quantitative research design with qualitative data collection and analysis methods. Data were collected through open‐ended questionnaires, interviews, and document analysis to portray the patterns of students' conceptual pathways of the PNM from pre to postinstruction to 3 months after the instruction. An interpretive analysis of the qualitative data revealed six different conceptual pathways varying between radical progress and no additional progress (stable) after the multirepresentational instruction and between stable (no change) and full decay over a 3‐month period following the instruction. The identified patterns of conceptual pathways provide information about the manner in which conceptual change occurred, as well as suggest potential implications for instructional practices. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1004–1035, 2010  相似文献   

3.
This teacher development study closely examined a teacher's practice for the purpose of understanding how she selected and implemented instructional materials, and correspondingly how these processes changed as she developed her problem‐based practice throughout a school year. Data sources included over 20 hours of planning and analysis meetings with the teacher and 27 video‐taped lessons with discussions before and after each lesson. Through qualitative analysis we examined the data for: students' cognitive demand for curricular materials the teacher selected and implemented; teacher's beliefs and practices for students' engagement in mathematical thinking; and teacher's and students' communication about mathematics during instruction. We found that the teacher shifted her views and use of instructional materials as she changed her practice towards more problem‐based approaches. The teacher moved from closely following her traditional, district‐adopted textbook to selecting problem‐based tasks from outside resources to build a curriculum. Simultaneously, she changed her practice to focus more on students' engagement in mathematical thinking and their communication about mathematics as part of learning. During this shift in practice, the teacher began to reify instructional materials, viewing them as instruments of her practice to meet students' needs. The process of shifting her views was gradual over the school year and involved substantial analysis and reflection on practice from the teacher. Implications include that teachers and teacher educators may need to devote more attention and support for teachers to use instructional materials to support instruction, rather than materials to prescribe instruction. This use of instructional materials may be an important part of transforming practice overall.  相似文献   

4.
This study investigated the development in students' nature of science (NOS) views in the context of an explicit inquiry‐oriented instructional approach. Participants were 18 seventh‐grade students who were taught by a teacher with “appropriate” knowledge about NOS. The intervention spanned about 3 months. During this time, students were engaged in three inquiry‐oriented activities that were followed by reflective discussions of NOS. The study emphasized the tentative, empirical, inferential, and creative aspects of NOS. An open‐ended questionnaire, in conjunction with semi‐structured interviews, was used to assess students' views before, during, and after the intervention. Before instruction, the majority of students held naïve views of the four NOS aspects. During instruction, the students acquired more informed and “intermediary” views of the NOS aspects. By the end of the intervention, the students' views of the NOS aspects had developed further still into informed and “intermediary.” These findings suggest a developmental model in which students' views develop along a continuum during which they pass through intermediary views to reach more informed views. Implications for teaching and learning of NOS are discussed. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 470–496, 2008  相似文献   

5.
In this study, we analyzed the quality of students' written scientific explanations found in notebooks and explored the link between the quality of the explanations and students' learning. We propose an approach to systematically analyzing and scoring the quality of students' explanations based on three components: claim, evidence to support it, and a reasoning that justifies the link between the claim and the evidence. We collected students' science notebooks from eight science inquiry‐based middle‐school classrooms in five states. All classrooms implemented the same scientific‐inquiry based curriculum. The study focuses on one of the implemented investigations and the students' explanations that resulted from it. Nine students' notebooks were selected within each classroom. Therefore, a total of 72 students' notebooks were analyzed and scored using the proposed approach. Quality of students' explanations was linked with students' performance in different types of assessments administered as the end‐of‐unit test: multiple‐choice test, predict‐observe‐explain, performance assessment, and a short open‐ended question. Results indicated that: (a) Students' written explanations can be reliably scored with the proposed approach. (b) Constructing explanations were not widely implemented in the classrooms studied despite its significance in the context of inquiry‐based science instruction. (c) Overall, a low percentage of students (18%) provided explanations with the three expected components. The majority of the sample (40%) provided only claims without any supporting data or reasoning. And (d) the magnitude of the correlations between students' quality of explanations and their performance, were all positive but varied in magnitude according to the type of assessment. We concluded that engaging students in the construction of high quality explanations may be related to higher levels of student performance. The opportunities to construct explanations in science‐inquiry based classrooms, however, seem to be limited. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 583–608, 2010  相似文献   

6.
This study examined the relations between students' reading motivation, perceptions of reading instruction and reading amount, together with grade differences, in a Chinese educational context. A total of 1,146 students from 19 secondary schools in Hong Kong voluntarily responded to a questionnaire that measured these three sets of variables. The study's findings indicated that students' intrinsic motivation was most strongly related to their reading amount. Students' perceptions of the reading instruction they received in their Chinese language class were significantly related to their reading motivation, but were only indirectly related to their reading amount, being mediated through reading motivation. Consistent with previous studies, significant grade differences were found in all types of reading motivation, students' perceptions of reading instruction and students' reading amount. The findings indicated that junior secondary students had better self‐efficacy, intrinsic motivation, extrinsic motivation and social motivation than senior secondary students. The largest grade difference was in students' self‐efficacy. Junior secondary students also perceived the reading instruction in their Chinese language class as more mastery‐oriented and read more frequently than senior secondary students. The implications of these findings for understanding Chinese students' reading motivation and for planning effective reading instruction to enhance their motivation are discussed.  相似文献   

7.
This research investigated the effect of reflective discussions following inquiry‐based laboratory activities on students' views of the tentative, empirical, subjective, and social aspects of nature of science (NOS). Thirty‐eight grade six students from a Lebanese school participated in the study. The study used a pretest–posttest control‐group design and focused on collecting mainly qualitative data. During each laboratory session, students worked in groups of two. Later, experimental group students answered open‐ended questions about NOS then engaged in reflective discussions about NOS. Control group students answered open‐ended questions about the content of the laboratory activities then participated in discussions of results of these activities. Data sources included an open‐ended questionnaire used as pre‐ and posttest, answers to the open‐ended questions that experimental group students answered individually during every session, transcribed videotapes of the reflective discussions of the experimental group, and semi‐structured interviews. Results indicated that explicit and reflective discussions following inquiry‐based laboratory activities enhanced students' views of the target NOS aspects more than implicit inquiry‐based instruction. Moreover, implicit inquiry‐based instruction did not substantially enhance the students' target NOS views. This study also identified five major challenges that students faced in their attempts to change their NOS views. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1229–1252, 2010  相似文献   

8.
This study, conducted in an inner-city middle school, followed the conceptual changes shown in 25 students' writing over a 12-week science unit. Conceptual changes for 6 target students are reported. Student understanding was assessed regarding the nature of matter and physical change by paper-and-pencil pretest and posttest. The 6 target students were interviewed about the goal concepts before and after instruction. Students' writing during lesson activities provided qualitative data about their understandings of the goal concepts across the science unit. The researcher constructed concept maps from students' written statements and compared the maps across time to assess changes in the schema of core concepts, complexity, and organization as a result of instruction. Target students' changes were studied in detail to determine patterns of conceptual change. After patterns were located in target students' maps, the remaining 19 students' maps were analyzed for similar patterns. The ideas that students identified in their writing showed changes in central concepts, complexity, and organization as the lessons progressed. When instructional events were analyzed in relation to students' demonstrated ideas, understanding of the goal conceptions appeared in students' writing more often when students had opportunities to explain their new ideas orally and in writing.  相似文献   

9.
Preparing students to achieve the lofty goal of functional scientific literacy entails addressing the normative and non‐normative facets of socioscientific issues (SSI) such as scientific processes, the nature of science (NOS) and diverse sociocultural perspectives. SSI instructional approaches have demonstrated some efficacy for promoting students' NOS views, compassion for others, and decision making. However, extant investigations appear to neglect fully engaging students through authentic SSI in several ways. These include: (i) providing SSI instruction through classroom approaches that are divorced from students' lived experiences; (ii) demonstrating a contextual misalignment between SSI and NOS (particularly evident in NOS assessments); and (iii) framing decision making and position taking analogously—with the latter being an unreliable indicator of how people truly act. The significance of the convergent parallel mixed‐methods investigation reported here is how it responds to these shortcomings through exploring how place‐based SSI instruction focused on the contentious environmental issue of wolf reintroduction in the Greater Yellowstone Area impacted sixty secondary students' NOS views, compassion toward those impacted by contentious environmental issues, and pro‐environmental intent. Moreover, this investigation explores how those perspectives associate with the students' pro‐environmental action of donating to a Yellowstone environmental organization. Results demonstrate that the students' NOS views became significantly more accurate and contextualized, with moderate to large effect, through the place‐based SSI instruction. Through that instruction, the students also exhibited significant gains in their compassion for nature and people impacted by contentious environmental issues and pro‐environmental intent. Further analyses showed that donating students developed and demonstrated significantly more robust and contextualized NOS views, compassion for people and nature impacted by contentious environmental issues, and pro‐environmental intent than their nondonating counterparts. Pedagogical implications include how place‐based learning in authentic settings could better prepare students to understand NOS, become socioculturally aware, and engage SSI across a variety of contexts.  相似文献   

10.
Teachers involved in literacy instruction are continuously involved in decision‐making about the methods of instruction and the curriculum materials to employ with their students, and how to respond to their students' efforts along the road to skilled reading. There are various cues to which they may respond, but recent research suggests that some of these cues are not as useful as was first thought. Further, many teachers consider themselves ill‐equipped by their teacher‐training to make considered decisions in the best interests of all the students in their care. Attention to the stages of reading development can provide a framework for teachers to enable interpretation of student reading performance and appropriate assistance to those in need.  相似文献   

11.
In recent years, there has been a strong push to transform STEM education at K-12 and collegiate levels to help students learn to think like scientists. One aspect of this transformation involves redesigning instruction and curricula around fundamental scientific ideas that serve as conceptual scaffolds students can use to build cohesive knowledge structures. In this study, we investigated how students use mass balance reasoning as a conceptual scaffold to gain a deeper understanding of how matter moves through biological systems. Our aim was to lay the groundwork for a mass balance learning progression in physiology. We drew on a general models framework from biology and a covariational reasoning framework from math education to interpret students' mass balance ideas. We used a constant comparative method to identify students' reasoning patterns from 73 interviews conducted with undergraduate biology students. We helped validate the reasoning patterns identified with >8000 written responses collected from students at multiple institutions. From our analyses, we identified two related progress variables that describe key elements of students' performances: the first describes how students identify and use matter flows in biology phenomena; the second characterizes how students use net rate-of-change to predict how matter accumulates in, or disperses from, a compartment. We also present a case study of how we used our emerging mass balance learning progression to inform instructional practices to support students' mass balance reasoning. Our progress variables describe one way students engage in three dimensional learning by showing how student performances associated with the practice of mathematical thinking reveal their understanding of the core concept of matter flows as governed by the crosscutting concept of matter conservation. Though our work is situated in physiology, it extends previous work in climate change education and is applicable to other scientific fields, such as physics, engineering, and geochemistry.  相似文献   

12.
This study aimed to expand on existing research about motivational change by investigating within‐year changes of adolescents' intrinsic reading motivation and perceived reading instruction among students from different grades and achievement levels. Six hundred and ninety five students from 10 secondary schools in Hong Kong voluntarily completed a questionnaire that measured these two variables at the beginning and near the end of a school year. The study's findings indicated that students' intrinsic reading motivation was generally stable over a school year. A significant increase in the perceived degree of mastery goal structure in reading instruction was observed near the end of the school year. Students' perception of instruction remained a strong and positive predictor of intrinsic motivation after controlling their prior motivation and other background variables. Different factors affecting students' motivational change are discussed to provide insights for promoting their reading motivation and counter the prevalent trend of motivational decline.  相似文献   

13.
14.
Students at the junior high school (JHS) level often cannot use their knowledge of physics for explaining and predicting phenomena. We claim that this difficulty stems from the fact that explanations are multi‐step reasoning tasks, and students often lack the qualitative problem‐solving strategies needed to guide them. This article describes a new instructional approach for teaching mechanics at the JHS level that explicitly teaches such a strategy. The strategy involves easy to use visual representations and leads from characterizing the system in terms of interactions to the design of free‐body force diagrams. These diagrams are used for explaining and predicting phenomena based on Newton's laws. The findings show that 9th grade students who studied by the approach advanced significantly from pretests to post‐tests on items of the Force Concept Inventory—FCI and on other items examining specific basic and complex understanding performances. These items focused on the major learning goals of the program. In the post‐tests the JHS students performed on the FCI items better than advanced high‐school and college students. In addition, interviews conducted before, during, and after instruction indicated that the students had an improved ability to explain and predict phenomena using physics ideas and that they showed retention after 6 months. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1094–1115, 2010  相似文献   

15.
The current study deals with the development of system thinking skills at the junior high school level. The sample population included about 50 eighth‐grade students from two different classes of an urban Israeli junior high school who studied an earth systems‐based curriculum that focused on the hydro cycle. The study addressed the following research questions: (a) Could the students deal with complex systems?; (b) What has influenced the students' ability to deal with system perception?; and (c) What are the relationship among the cognitive components of system thinking? The research combined qualitative and quantitative methods and involved various research tools, which were implemented in order to collect the data concerning the students' knowledge and understanding before, during, and following the learning process. The findings indicated that the development of system thinking in the context of the earth systems consists of several sequential stages arranged in a hierarchical structure. The cognitive skills that are developed in each stage serve as the basis for the development of the next higher‐order thinking skills. The research showed that in spite of the minimal initial system thinking abilities of the students most of them made some meaningful progress in their system thinking skills, and a third of them reached the highest level of system thinking in the context of the hydro cycle. Two main factors were found to be the source of the differential progress of the students: (a) the students' individual cognitive abilities, and (b) their level of involvement in the knowledge integration activities during their inquiry‐based learning both indoors and outdoors. © 2005 Wiley Periodicals, Inc.  相似文献   

16.
The purpose of this study was to examine the effects of open inquiry instruction with low achieving, marginalized high school students. Students with long histories of scholastic failure were asked to participate in question generation, experimental design, and argument construction as a part of their General Science course instruction. Videotapes were collected from daily science instruction, and entrance and exit instruction interviews were conducted using identical open‐ended problems. From this dataset, comparisons were made between students' entrance and exit interview responses representing change over time. Shifts in student responses coincided with renegotiated classroom norms for scientific discourse. Results are reported for five students in the form of assertions. Students' arguments were observed to shift toward those more consistent with the nature of the scientific arguments including: (1) students' tentativeness of knowledge claims, (2) students' use of evidence, and (3) students' views regarding the source of scientific authority. Implications are discussed for research and practice in light of the national standards' call for universal scientific literacy. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 807–838, 2000  相似文献   

17.
This study investigates how 25 junior high school students employed their bodies of knowledge and responded to problem cues while individually performing a science experiment and reasoning about a drops phenomenon. Line‐by‐line content analysis conducted on students' written ad hoc explanations aimed to reveal students' concepts and their relations within their explanations, and to construe students' mental models for the science phenomenon based on level of specification, models' correspondence with scientific claims, macro versus micro view of matter, and type of evidence used. We then inferred four types of knowledge representations for the nature of matter. Findings are discussed in terms of implications for science teaching. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 970–993, 2004  相似文献   

18.
The aim of this experimental study was to compare learning outcomes of students using a simulation alone (simulation environment) with outcomes of those using a simulation in parallel with real circuits (combination environment) in the domain of electricity, and to explore how learning outcomes in these environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction. Matched‐quartets were created based on the pre‐test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results demonstrated that the instructional support had an expected effect on students' understanding of electric circuits when they used the simulation alone; pure procedural guidance (SI) was insufficient to promote conceptual understanding, but when the students were given more guidance for the discovery process (SE) they were able to gain significant amount of subject knowledge. A surprising finding was that when the students used the simulation and the real circuits in parallel, the explicit instruction (CE) did not seem to elicit much additional gain for their understanding of electric circuits compared to the implicit instruction (CI). Instead, the explicit instruction slowed down the inquiry process substantially in the combination environment (CE). Although the explicit instruction was able to improve students' conceptual understanding of electrical circuits considerably in the simulation environment, their understanding did not reach the level of the students in the combination environment. These results suggest that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 48: 71–93, 2011  相似文献   

19.
Reform in science and mathematics curricula has moved from rote learning of facts and computation skills toward learning a structure of a subject matter. While the reasons for this shift, such as greater understanding, transfer and intellectual excitement are admirable, there is little empirical evidence to support them. A first step in examining such claims is to develop methodology for representing structure in the to‐be‐learned instructional material and in students' memories. The purposes of this paper, then, are to present (a) a method for examining a subject‐matter structure in prose materials, (b) methods for examining a subject‐matter structure in students’ memories, and (c) data bearing on the validity of structural interpretations of these measures. If these structures can be represented objectively and independently — even if not in a complete form or error free — a beginning has been made in validating the reasons for teaching structure.  相似文献   

20.
This study investigates the proximal and distal images of the nature of science (NOS) that A‐level students develop from their participation in chemistry laboratory work. We also explored the nature of the interactions among the students' proximal and distal images of the NOS and students' participation in laboratory work. Students' views of the NOS and the nature of their chemistry laboratory work were elicited through students' responses to an open‐ended questionnaire and semistructured interviews. The results suggest that students build some understandings of the NOS from their participation in laboratory work. Students' proximal NOS understandings appear to build into and interact with their understandings of the nature and practice of professional science. This interaction appears to be mediated by the nature of instruction. It is posited that each student's conceptual ecological system is replete with interactions, which govern attenuation of proximal understandings into distal images. Methodologically, the study illustrates how students' laboratory work–based proximal and distal images of the NOS can be identified and extracted through analyzing and interpreting their responses to protocols. Implications for A‐level Chemistry instruction and curriculum development are raised. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 127–149, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号