首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1971年,JU.I.Gerasimov给出下述三角不等式: 设△ABC内部任一点P到三边BC、CA、AB的距离为r_1、r_2、r_3,BC=a,CA=b,AB=c。则 r_1r_2/(ab) r_2r_3/(bc) r_3r_1/(ca)≤1/4。 (1) 最近,刘健先生在文[1]中将(1)推广到两个三角形中。本文拟给出(1)的如下加强:  相似文献   

2.
1971年,Ju.I.Gerasimov给出了下述三角形不等式: 设△ABC内部任一点P至边BC、CA、AB的距离分别为r_1、r_2、r_3,边BC、CA、AB分别为a、b、c.则 (r_2r_3)/(bc) (r_3r_1)/(ca) (r_1r_2)/(ab)≤1/4. (1)等号仅当P为△ABC的外心时成立. 在已知的有关△ABC、△A′B′C′及任意正数x、y、z的不等式 (1 y z)~2≥4(yzsinAsinA′ zxsinBsinB′ xysinCsinC′)(2)  相似文献   

3.
命题设max(A,B,C)<120°,点P是△ABC内的费马点(即△ABC内满足∠BPC=∠CPA=∠APB=120°的点),BC=a,CA=b,AB=c;△ABC的内切圆半径为r,点P到三边BC、CA、AB的距离分别为r_1、r_2、r_3,则有a~2r_1 b~2r_2 c~2r_3≥1/3(a b c)~2·r (1) 等号成立当且仅当△ABC为正三角形。证明:记PA=u,PB=v,PC=w;△ABC、  相似文献   

4.
设P是△ABC内部满足∠BPC=∠CPA=∠APC=120°的一点,则称点P是△ABC的费尔马点。 定理 设P是△ABC的费尔马点,点P至边BC、CA、AB的距离分别为r_1、r_2、r_3,△ABC的内切圆半径为r.则有 r_n r_2 r_3≤3r.(1) 证明:记BC=a,CA=b,AB=c,PA=R_1,PB=R_2,PC=R_3,则有 a~2=R_2~2 R_3~2 R_2R_3, (2) b~2=R_3~2 R_1~2 R_3R_1. (3) 不妨设a≥b≥c.则可证  相似文献   

5.
在△ABC中,记三边长BC=a,CA=b,AB=c,角A、角B、角C的平分线长分别为t_a、t_b、t_c,△ABC的外接圆半径与内切圆半径分别为R与r(下文均用此记号),笔者在文[1]与文[2]中分别证明了: ∑1/t_a≥1/R 1/2r (1) ∑1/t_a≥2/3~(1/2)∑1/a (2)当且仅当△ABC为正三角形时,(1)、(2)两式取等号(这里∑表示循环和,下同). 本文将给出较(1)、(2)两式更强的不等式,即 定理 在△ABC中,有 (∑1/t_a)~2≥(∑1/a)~2 (1/2r)~2 (3)当且仅当△ABC为正三角形时,(3)式取等号.  相似文献   

6.
文[1]给出了关于三角形中线的一个不等式,即“在△ABC中,成立不等式 ab/m_am_b+bc/m_bm_c+ca/m_cm_a≥4,等号当且仅当△ABC为正三角形时成立。”下面利用上述结论证明文[2]中的一个几何不等式。题目设△ABC的重心为G,AG,BG,CG的延长线分别交三边BC,CA,AB于D,E,F,交△ABC的外接圆于A′,B′,C′,求证: A′D/DA+B′E/EB+C′F/FC≥1, 证明:设BC=a,CA=b,AB=c,AD=m_a,BE=m_b,CF=m_c。  相似文献   

7.
设 D、E、F 分别为△ABC 的边 BC、CA、AB 上的周界中点,如图所示,△ABC、△AEF、△BFD、△CDE、△DEF 面积分别记为△、△_A、△_B、△_C、△_0,则有△≥4△_0,△~3≥64△_A△_B△_C.文[1]将它们分别加强为△~2≥16△_0~2 ∑(△_A-△_0)~2;△~3≥64△_A△_B△_C △∑(△_A-△_0)~2.  相似文献   

8.
一个有趣的平几公式   总被引:4,自引:1,他引:4  
本文先证明笔者最近发现的一个平几公式,即: 定理1 已知△ABC,BC边上的高为h,N为BC边内一点,△ABN与△ANC的内切圆半径分别为r_1、r_2,则△ABC的内切圆半径r满足 r=r_1 r_2-2r_1r_2/h_1 (1). 在证明定理1的时候需要用到一道已知的平几题,即 辅助命题 在△ABC中,内切圆⊙I与BC、CA、AB三边分别切于D、E、F,DIK为⊙I的直径,直线AK交BC边于C,则BG=CD.  相似文献   

9.
<正>文[1]中,梁昌金老师证明了三角形中关于外心、重心、垂心、内心的四个优美不等式,统一叙述如下:命题A设P为△ABC的外心(重心、垂心、内心),射线AP、BP、CP分别交三边BC、CA、AB于点D、E、F,交△ABC的外接圆于点A1、B1、C1,则AD/DA_1+BE/EB_1+CF/FC_1≥9.在此基础上,在文末提出了一个猜想:猜想设P为△ABC内部任意一点,射线  相似文献   

10.
△ABC的三边BC、CA、AB分别记为a、b、c,设P是△ABC内部任意一点,点P到边BC、CA、AB的距离分别记为r_1、r_2、r_3,∠BPC、∠CPA、∠APB的平分线长分别记为ω_1、ω_2、ω_3,设AP、BP、CP的延长线七分别交BC、BA、AB于L、M、N,且记AL=l_a,BM=l_b,CN=l_c;Σ表示对a、b、c轮遍求和.  相似文献   

11.
命题 设P是△ABC内部任一点,△BPC、△CPA、△APB的外接圆半径分别为R_a、R_b、R_c,P至边BC、CA、AB的距离分别为r_1、r_2、r_3。则  相似文献   

12.
文[1]给出如下一个定理: 定理若△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,△AEF、△BDF、△CDE的内切圆分别是⊙I1、⊙I2、⊙I3,其半径分别是r1、r2、r3,则有a/r1 b/r2 c/r3≥12√3.  相似文献   

13.
设 P是△ ABC内部任意一点 ,P至边BC,CA,AB的距离分别为 r1 ,r2 ,r3 ,令 PA= R1 ,PB=R2 ,PC=R3 ,涉及三角形内部任意一点的不等式是一类十分有趣的几何不等式 ,最著名的是 Erdos- Mordell不等式R1 +R2 +R3 ≥ 2 (r1 +r2 +r3 ) . (1)本文将证明关于 (R1 ,R2 ,R3 )及 (r1 ,r2 ,r3 )与△ ABC半周长 s的一个线性不等式 .首先给出一个优美简洁的引理 .引理 设 P是△ ABC内部任意一点 ,则(R1 +R2 +R3 ) 2≥s2 +(r1 +r2 +r3 ) 2 . (2 )当且仅当△ ABC为正三角形且 P为中心时(2 )式取等号 .证明 令 BC=a,CA=b,AB=c,ha 为BC边…  相似文献   

14.
初中《几何》第二册第106页第二小题:设△ABC的边BC=a,CA=b,AB=c,且s=1/2(a+b+c),内切圆I和BC、CA、AB切于D、E、F(如图1),求证:AE=AF=s-a,BF=  相似文献   

15.
[题] 从椭圆x~2/a~2+y~2/b~2=1的中心作三条两两互成2π/3角的半径r_1,r_2,r3,求证:1/r_1~2+1/r_2~2+1/r_3~2定值。证:将椭圆方程化为极坐标方程得ρ~(2)cos~(2)θ/a~(2)+ρ~(2)sin~(2)θ/b~(2)=1→1/ρ~(2)  相似文献   

16.
闵飞老师在文[1]证明了如下新颖的命题:在RtΔABC(A为直角)中,内切圆Ⅰ与边BC,CA,AB分别切于D,E,F,ΔDEF,ΔBDF,ΔCDE的垂心分别为H_1,H_2,H_3,则ΔH_1H_2H_3是正三角形.  相似文献   

17.
求证:G是△ABC的重心的充要条件是(→GA) (→GB) (→GC)=0. 证明 (1)必要性:如图1,D、E、F分别是BC、AC、AB的中点,G是△ABC的重心,所以(→GA)=(2/3)(→DA)=(2/3)((→DC) (→CA))=(2/3)((1/2)(→BC) (→CA)),同理可得:(→GB)=(2/3)((1/2)(→CA) (→AB)),(→GC)=(2/3)((1/2)(→AB) (→BC)),所以(→GA) (→GB) (→GC)=(2/3)((1/2)(→BC) (1/2)(→CA) (1/2)(→AB) (→CA) (→AB) (→BC))=(2/3)×(3/2)((→CA) (→AB) (→BC))=0.  相似文献   

18.
设D、E、F分别是△ABC的边BC、CA、AB上的点,而α、β、γ和δ分别表示△AEF,△BFD,△CDE和△DEF的面积,则δ≥min{α,β,γ}。 (1) 最近,陈琦老师给出了Erdos-Bager不等式(1)的如下形式的加强: 3/δ≤1/α+1/β+1/γ。 (2)等号成立当且仅当D、E、F是△ABC边上的中点。注意到不等式: 3(ab+bc+ca)≤(a+b+c)~2。 (3) 自然可考虑(2)的进一步加强形式: 3/δ~2≤1/αβ+1/βγ+1/γα。 (4)  相似文献   

19.
276.设P是正△ABC内一点,分别作P关于直线AB、BC、CA的对称点C_1、A_1、B_1,并设△ABC、△A_1B_1C_1的面积分别为S、S′,试证:S′≤S。证:如图1,设正△ABC的边长为x,P到三边BC、CA、AB的距离分别为a、b、c,△PB_1C_1、△PC_1A_1、△PA_1B_1的面积分别为S_1、S_2、S_3,那么S′=S_1+S_2+S_3,且因∠A_1PB_1=∠B_1PC_1=∠C_1PA_1=120°,所以 S_1=1/2·2b·2c·sin120°=3~(1/2)bc, S_2=3~(1/2)ca,S_3=3~(1/2)ab。因正三角形内任一点到三边的距离之和等于此正三角形的高,即a+b+c=3~(1/2)/2x,于是S′=3~(1/2)(bc+ca+ab)≤3~(1/2)·1/3(a+b+c)~2=3~(1/2)/3·(3~(1/2)/2x)~2=3~(1/2)/4x~2=S。  相似文献   

20.
题 设P为△ABC内任意一点,P到三边BC、CA、AB的距离依次为d_1,d_2,d_3,记DC=O,CA=b,AB=c,求证:a/d_1 b/d_2 c/d_3≥(a b c)~2/2S_(△ABC).(IMO-22)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号