首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Science & Education - Learning science in the context of socio-scientific issues (SSI) can promote scientific literacy that links science to everyday life and society. In this position paper,...  相似文献   

2.
Research in Science Education - This paper explores the effect teachers’ participation in a targeted inquiry-based/nature of science (NoS) continuing professional development programme had on...  相似文献   

3.
科学探究:本质、特征与过程的思考   总被引:24,自引:0,他引:24  
科学探究作为一种个体通过自主地调查和研究来认识和解释自然的活动,是以自然界为对象的,它要遵循一定的研究程序,运用各种科学方法。问题性、建构性、思维性和合作性是科学探究的基本特征。观察和提出问题、形成假设、检验求证、得出和解释结论、交流和应用等共同构成了科学探究的全过程。  相似文献   

4.
Leblebicioglu  G.  Abik  N. M.  Capkinoglu  E.  Metin  D.  Dogan  E. Eroglu  Cetin  P. S.  Schwartz  R. 《Research in Science Education》2019,49(5):1231-1255
Research in Science Education - Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also...  相似文献   

5.
In order for students to truly understand science, we feel that they must be familiar with select subject matter and also understand how that subject matter knowledge was generated and justified through the process of inquiry. Here we describe a high school biology curriculum designed to give students opportunities to learn about genetic inquiry in part by providing them with authentic experiences doing inquiry in the discipline. Since a primary goal of practicing scientists is to construct explanatory models to account for natural phenomena, involving students in the construction of their own explanatory models provides a major emphasis in the classroom. The students work in groups structured like scientific communities to build, revise, and defend explanatory models for inheritance phenomena. The overall instructional goals include helping students understand the iterative nature of scientific inquiry, the tentativeness of specific knowledge claims (and why they should be considered tentative), and the degree to which scientists rely on empirical data as well as broader conceptual and metaphysical commitments to assess models and to direct future inquiries.  相似文献   

6.
Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.
Siu Ling WongEmail:

Siu Ling Wong    is an Assistant Professor, in the Division of Science, Mathematics and Computing in the Faculty of Education at The University of Hong Kong. She received her B.Sc. from The University of Hong Kong and her Ph.D. from the University of Oxford. Her research interests include promoting teachers’ and students’ understanding of nature of science and scientific inquiry, physics education, teacher professional development. Jenny Kwan   is a PhD student in the Faculty of Education, at The University of Hong Kong. She received her B.Sc. from University of Sydney. She is now investigating in-service teachers’ classroom instruction on nature of science in relation to their intentions, beliefs, and pedagogical content knowledge. Derek Hodson   is Professor of Science Education at the Ontario Institute for Studies in Education and Editor of the Canadian Journal of Science, Technology and Mathematics Education. His major research interests include: history, philosophy & sociology of science and its implications for science education; STSE education and the politicisation of science education; science curriculum history; multicultural and antiracist education; and science teacher education via action research. Benny Hin Wai Yung    is Head, Associate Professor, in the Division of Science, Mathematics and Computing in the Faculty of Education at University of Hong Kong. His main research areas are teacher education and development, science education and assessment for science learning. His recent publications include Yung BHW (2006) Assessment reform in science education: fairness and fear. Springer, Dordrecht.  相似文献   

7.
New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher''s investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.  相似文献   

8.
Laboratory education can play a vital role in developing a learner''s autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a “mutation” method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the “mutations”; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional “cookbook”-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class.  相似文献   

9.
The teacher as researcher, Colburn, and the researcher, Bianchini, investigated Colburn's use of inquiry to teach the nature of science to prospective elementary teachers; we attempted to identify those aspects of the nature of science addressed through inquiry instruction and the varied contexts in which such insights arose. We began by videotaping small group inquiries and whole class deliberations during three units of Colburn's inquiry‐oriented general science course. We then conducted separate qualitative analyses of the resulting 20 h of videotaped data. Colburn, the teacher and informant, adopted an emic perspective and employed examples of explicit and implicit deliberations and demonstrations of the nature of science to construct his case. Bianchini also used an emic perspective, but examined only what teacher and students explicitly identified as examples of and insights into the nature of science. Taken together, our analyses highlight the difficulties in presenting a cogent and comprehensive picture of the nature of science to students, the teacher's pivotal role in initiating discussions of what science is and how scientists work, and the strengths and limitations of using classroom‐based research to investigate nature of science instruction. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 177–209, 2000  相似文献   

10.
This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in genetics instruction; and (3) suggests a modified concept mapping assessment tool for both NOS and GCK. A quasi-experimental control group research design was utilized with pretests, posttests, and delayed posttests, combining qualitative data and quantitative data. The experimental group was taught with historical curricular lessons, while the control group was taught with non-historical curricular lessons. The results indicated that students in the experimental group developed better understanding in targeted aspects of NOS immediately after the intervention and retained their learning 2 months after the intervention. Both groups developed similar genetics knowledge in the posttest, and revealed a slight decay in their understanding in the delayed posttest.  相似文献   

11.
Nott  Mick  Wellington  Jerry 《Science & Education》1998,7(6):579-594
This paper covers three main areas : eliciting teachers' views of the nature of science; interpreting and understanding these views; and developing them in the context of initial or in-service teacher education. The three areas clearly overlap but we begin with eliciting : this section includes a look at past probes, and then presents the notion of critical incidents, with a range of examples. We argue throughout that critical incidents can be used partly as a means of probing teachers' views of science, but also have value as a tool for professional development. We then discuss interpreting and understanding teachers' responses to critical incidents, based on our research with over 300 teachers and student teachers who have worked with them. In the third section, on developing, we pursue the argument that teachers' understandings of the nature of science are located in their professional experience. We argue that if teachers' understandings are embedded within their professional practice this has important consequences for appropriate teacher education and professional development in the area of the nature of science.  相似文献   

12.
13.
The prospective virtues of using history and philosophy of science in science teaching have been pronounced for decades. Recently, a role for nature of science in supporting scientific literacy has become widely institutionalized in curriculum standards internationally. This short review addresses these current needs, highlighting the concrete views of teachers in the classroom, eschewing ideological ideals and abstract theory. A practical perspective highlights further the roles of history and philosophy—and of sociology, too—and even broadens their importance. It also indicates the relevance of a wide range of topics and work in Science Studies now generally absent from science educational discourse. An extensive reference list is provided.  相似文献   

14.
This article describes teaching considerations related to the nature of science and scientific knowledge in an elementary science methods course. The decisions that were made, the rationale upon which these decisions were based, and the challenges evident are presented. Instructional strategies used during the course for the purpose of developing preservice teachers' understandings of the nature of science and scientific knowledge are described. The results of using these strategies, in regard to the impact on students' learning and their views on teaching the nature of science to elementary grade students are then discussed. The article concludes with a discussion on the implications for teaching the nature of science and scientific knowledge in the context of preservice elementary teacher education.  相似文献   

15.
16.
17.
Establishing literacy in science is often linked to building knowledge about the Nature of Science (NOS). This paper describes and evaluates an inservice program designed to build elementary teachers’ understanding of NOS and an awareness of how NOS impacts science classroom instruction. Data sources consisted of surveys, action research plan documentation and classroom observations. Program participants tended to demonstrate some gains in understanding more about NOS and they linked positive experiences in the program to the explicit and activity-based NOS instruction provided. Yet, participation in the professional development project might not have been equally beneficial for all teachers. The understanding of NOS may have been restricted to certain NOS aspects, and the demonstration of the participants’ understanding of NOS may have been short-lived with a somewhat limited impact on sustainable, long-term NOS-based classroom instruction. Implications for designing NOS related professional development programs and suggestions for improvements to further develop teacher understanding of NOS are discussed.  相似文献   

18.
19.
Research on the nature of science and science education enjoys a longhistory, with its origins in Ernst Mach's work in the late nineteenthcentury and John Dewey's at the beginning of the twentieth century.As early as 1909 the Central Association for Science and MathematicsTeachers published an article – A Consideration of the Principles thatShould Determine the Courses in Biology in Secondary Schools – inSchool Science and Mathematics that reflected foundational concernsabout science and how school curricula should be informed by them. Sincethen a large body of literature has developed related to the teaching andlearning about nature of science – see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intensephilosophical, historical and philosophical debate about the nature of scienceitself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to thenature of science as an educational goal; along with a few influential philosophicalworks by such authors as Kuhn, Popper, Laudan, Lakatos, and others. Whilenot exhaustive, the list should prove useful to educators, and scholars in otherfields, interested in the nature of science and how its understanding can berealised as a goal of science instruction. The authors welcome correspondenceregarding omissions from the list, and on-going additions that can be made to it.  相似文献   

20.
The leap from science student to scientist involves recognizing that science is a tentative, evolving body of knowledge that is socially constructed and culturally influenced; this is known as The Nature of Science (NOS). The aim of this study was to document NOS growth in first-year premedical students who participated in a science book club as a curricular option. The club read three acclaimed nonfiction works that connect biology to medicine via the history of scientific ideas. Students’ NOS status was assessed as informed, transitional, or naïve at the beginning and end of the academic year using the Views of Nature of Science Questionnaire–Form C (VNOS-C). Focus group interviews and document analysis of assignments and exams provided qualitative evidence. VNOS-C scores improved over the academic year regardless of book club participation. Students who participated in book club had marginally better NOS status at the end of the year but also at the beginning, suggesting that book club may have attracted rather than produced students with higher NOS status. It is notable that an improvement in NOS understanding could be detected at all, as there have been few reports of NOS growth in the literature in which NOS was not an explicit topic of instruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号