首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大家知道,直线方程y-y0=k(x-x0)中,若M0(x0,y0)为定点,k为参数,则可视其为过定点M0(x0,y0)的直线系方程.  相似文献   

2.
1直设线直方线程l的经各过种点形P式都可以统一为点向式0(x0,y0),v=(a,b)为其一个方向向量(ab≠0),P(x,y)是直线上的任意一点,则向量P0P与v共线,根据向量共线的充要条件,存在唯一实数t,使P0P=tv,即x=x0+at,y=y0+bt.消去参数t得直线方程为x-x0a=y-y0b将其变形为b(x-x0)=a(y-y0).易证当ab=0时直线方程也是b(x-x0)=a(y-y0),我们称方程b(x-x0)=a(y-y0)为直线的点向式方程.1)经过点P0(x0,y0)且斜率为k的直线方程:斜率为k的直线方向向量为(1,k),代入点向式得直线方程为k(x-x0)=(y-y0).即为直线方程的点斜式.2)直线斜率为k,在y轴的截距为b,代入点向式得直线方程为k(x-0)=(y-b),也就是直线方程的斜截式.3)经过两点P1(x1,y1),P2(x2,y2)的直线方程:直线方向向量为(x2-x1,y2-y1),代入点向式得直线方程为(y2-y1)(x-x1)=(x2-x1)(y-y1),即为两点式.4)在x轴的截距为a,在y轴的截距为b的直线方程:直线方向向量为(0,b)-(a,0)=(-a,...  相似文献   

3.
32.圆系方程: (1)过点A(x1,Y1),B(x2,y2),的圆系方程是:(x-x1)(x-x2)+(y-y1)(y-y2)+λ[(x-x1)(y1-y2)-(y-y1)(x1-x2)]=0→←(x-x1)(x-x2)+(y-y1)(y-y2)+λ(ax+by+c)=0,其中ax+by+c=0是直线AB的方程,λ是待定的系数。  相似文献   

4.
朱传美 《新高考》2011,(Z1):83-84
一般地,具有某种共同属性的直线的集合,称为直线系.直线系的方程中除含坐标变量x,y以外,还有可以根据具体条件取不同值的变量,称为参变量,简称参数.常见的5种直线系方程如下:①过点P(x0,y0)的直线系方程为y-y0=k(x-x0)(k为参数);②斜率为k的直线系方程为y=kx+b(b为参数);③与直线Ax+By+C=0平行的直线系方程为Ax+By+λ=0(λ为参数);④与  相似文献   

5.
在研究直线与圆锥曲线位置关系时,过定点的直线系通常设成y-y1=k(x-x1)或y=kx+b.这里k为斜率,因为这种形式的直线系方程不能包括与y轴平行(即斜率不存在)的直线.所以在一般情况下.要先讨论斜率不存在时直线与圆锥曲线的关系,然后再解答斜率存在时的情况.[第一段]  相似文献   

6.
设点A(x0,y0),则过点A的直线系可表示成α(y-y0)=β(x-x0(α、β不同时为零),有时也可用y-y0=k(x-x0)表示(除x=x0).  相似文献   

7.
直线是解析几何的基础,在解题时经常遇到一些特殊的过定点的直线,如过定点肘(x0,y0)的直线系方程为y—y0=五(x-x0)及x=xn;过直线l1:a1x+b1y+c1=0和l2:a2x+b2y+c2=0的交点的直线系的方程为(a1x+b1y+c1)+λ(a2x+b2y+c2)=0(不含l2).定点只是一个特殊点,但不要忽视它,定点若是运用得好,在解题中会起到意想不到、事半功倍的效果.  相似文献   

8.
习题:过圆x2+y2=r2(r〉0)上一点P(x0,y0)的切线方程为_________.解法1(利用△):当切线斜率存在时,设切线方程为:y-y0=k(x-x0),联立x2+y2=r2(r〉0)可得:(1+k2)x2+(2ky0-2k2x0)x-2kx0y0+k2x02+x02=0.  相似文献   

9.
我们知道,随着参数的不同,同一直线的参数方程也不同.过定点M0(x0,y0)、倾斜角为α的直线1的参数方程为{x=x0+tcosα,y=y0+tsinα(t为参数),我们把这一形式称为直线参数方程的标准形式,其中t表示直线l上以定点M。  相似文献   

10.
结论 已知直线mx+ny+p=0过点(x0,y0),则这条直线的方程可表示为:m(x-x0)+n(y-y0)=0,其中,m、n不同时为零.  相似文献   

11.
考点解读直线和圆点击考点一直线方程的五种形式(1)斜截式:y=kx b;(2)点斜式:y-y0=k(x-x0);(3)两点式:(y-y1)/(y2-y1)=x-x1/(x2-x1);(4)截距式:x/a y/b=1;(5)一般式:Ax By C=0.注意直线方程的四种特殊  相似文献   

12.
我们知道,若两条相交直线l1:A1x B1y C1=0与l2:A2x B2y C2=0的交点为定点(x0,y0),则直线系A1x B1y C1 λ(A2x B2y C2)=0过定点(x0,y0),特别地,直线系y-y0=k(x-x0)(x0,y0为常数,k为参数)过定点(x0,y0).利用此结论在解某些问题时简单快捷,是减少运算量、缩短解题过程的巧法之一,也增添了学习数学的情趣.一、直线与线段相交求参数【例1】如图1,已知l:y=mx-7及两点A(3,2),B(1,4).若l与线段AB相交,求m的取解值析范:由围y.=mx-7可知直线l恒过定点D(0,-7),连DA、DB.易求kDA=3,kDB=11,由图象知3≤m≤11.这里抓住直线恒过定点是关键.二、直…  相似文献   

13.
众所周知,如果设直线方程为点斜式y-y0=k(x-x0)或斜截式y=kx+b,那么斜率k就必须是存在的,所以它表示的直线的倾斜角α的取值范围是0≤α&;lt;π且α≠π/2.但是在解决某些问题的时候,我们又必须考虑斜率不存在的情况.如何解决这个矛盾呢?其实方法很简单,只要将直线方程设为x-x0=m(y-y0)或x=my+a就可以了.因为这两个方程表示的直线,当m=0时就是斜率不存在的情形.下面举例说明.  相似文献   

14.
圆的直径式方程是指如果一个圆的直径的端点是A(x1,y1)、B(x2,y2),那么圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0  相似文献   

15.
椭圆、双曲线方程的三种形式   总被引:1,自引:0,他引:1  
我们知道,直线方程除了一般式、截距式外还有以下三种形式:(1)点斜式y-y0 k(x~x0);(2)斜截式 y=kx b;(3)两点式y-y1/y2-y1=x-x1/x2-x1.  相似文献   

16.
1.圆锥曲线的切线求法可导函数y=f(x)上任一点P(x0,y0)处的切线方程为y-y0=f^1(x0)(x-x0),其中f^1(x0)=lim△r→^△y/△x=lim△x→0f(x0+△x)-f(x0)/△x,  相似文献   

17.
运用直线的参数方程解题,就是运用直线的参数方程的标准式{x=x0+tcosa, y=y0+tsina (t为参数)中的参数t的几何意义解题.参数t的几何意义就是直线上的定点M0(x0,y0)到直线上的动点M(x,y)的有向线段的数量.当M点在M0点上方时,f&;gt;0;当M点在M0点下方时,t&;lt;0;当M点与M0点重合时,t=0.  相似文献   

18.
如果直线l经过点A(x0 ,y0 )且斜率为k ,则直线l的方程为y - y0 =k(x -x0 ) ,反过来 ,如果直线l的方程为 :y- y0 =k(x-x0 ) ,那么直线l经过点A(x0 ,y0 ) ,在解题中 ,如果能逆用直线方程的点斜式 ,能简化解题过程 ,现分析几例 ,供参考 .     图 1例 1 曲线 y =4 -x2 + 1与直线 y=k(x- 2 ) + 4有两个交点 ,求k的范围 ,分析 该题若利用解方程的方法来解较繁 ,但若将直线方程变形为 y- 4=k(x- 2 ) ,会发现直线恒过定点A(2 ,4 ) ,这样就可以利用数形结合来解决 .解 将曲线方程变形得x2 + (y- 1) 2 =4  (y≥ 1) ,该曲线是以 (0 ,1)为圆…  相似文献   

19.
我们知道,随着参数选择的不同,同一直线的参数方程也不同,过定点M0(x0,y0)、倾斜角为α的直线l的参数方程为{x=x0 tcosα,;y=y0 tsiα,(t为参数)  相似文献   

20.
<正>在研究直线与圆锥曲线位置关系时,过定点的直线系通常设成y-y1=k(x- x1)或y=kx+b,这里k为斜率.因为这种形式的直线系方程不能包括与x轴垂直(即斜率不存在)的直线,所以在一般情况下,要先讨论斜率不存在时直线与圆锥曲线的关系,然后再计算斜率存在时的情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号