首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、少用蛮动多用巧动解题要求正确而简捷,而简捷多半要借助于认真观察、深入思考,不满足于检式套语,勇于创新.例1 已知方程2(m+1)x~2+4mx+3m-2=0的两根异号、试确定实数 m 的范围.分析此题常见的解题方案是由二次项系数不等于0、判别式大于0及两根之积小于0,所组成的不等式组给定.其实,两根异号,只要求两根之积小于0即可.这是因为对于 ax~2+bx+c=0(a≠0)而  相似文献   

2.
数学的定义是建立数学大厦的基石,求与一元二次方程的根有关的代数式之值的问题时,若能恰当地用根的定义来解,则简捷明快,事半功倍.一、求代数式的值例1若m、n是关于x的方程x~2+(p一2)x+1=0的两个根,求代数式(m~2+mp+1)(n+np+1)的值.析解若展开变形求解,则相当繁冗.但依题意易想到方程根的定义,有m~2+(p-2)m+1=0,n~2+(p-2)n+1=0.再观察待求式,又可想到将此二式继而变形为m~2+mp+1=2m,  相似文献   

3.
<正> 对于实系数一元二次方程ax2+bx+c=0(c≠0)两实根范围的问题,除有一根大于零而另一根小于零,两根大于零,两根都小于零三种情形较简单外.其余情形的讨论都较难,本文现介绍两种不同的方法以供大家参考. 例1 已知方程x2+(m+2)x+3=0的两根都比1大,求m  相似文献   

4.
二次方程、二次函数无疑是初中数学的重中之重,而一元二次方程根的讨论能融汇方程、函数和不等式的知识,对强化数形结合能力,培养思维的严密性与灵活性,都是很好的课题,值得我们重视.本文相对集中有关内容,使读者便于比较和掌握.例1当m是怎样的值时,方程x2-(m+1)x+m=0的根分别满足:(1)两根都是正根;(2)两根互为相反数;(3)两根异号,且负根的绝对值大于正根的绝对值;(4)两根都大于-1.分析注意观察方程的特点,不要贸然动用求根公式、判别式和韦达定理.解原方程即(x-1)(x-m)=0,有x1=1,x2=m,因此(1)只要x2>0,即m>0;(2)已知x1=1,只要m=-1;(3)因为x…  相似文献   

5.
例题1°.关于 x 的方程2x~2-(m+1)x-m=0的一个根在1和2之间(不包括1和2),另一个根小于1,求m的取值范围.2°.关于 x 的方程 x~2+(m-7)x+m=0的两根都在1和2之间(不包括1和2),求 m 的取值范围.解1°解法1 利用求根公式得 x=  相似文献   

6.
一元二次方程的根的判别式和韦达定理(根与系数关系)在解题中有广泛的应用,近年来中考中屡屡以压轴题形式出现,现举例说明·例1(四川省)已知关于x的方程x2-2(m+1)x+m2-2m-3=0,①的两个不相等实数根中有一个根为0,是否存在实数k,使关于x的方程x2-(k-m)x-k-m2+5m-2=0,②的两个实数根x1、x2之差的绝对值为1?若存在,求出k的值;若不存在,请说明理由·解:因为方程①有两个不等实根,所以Δ=|-2(m+1)|2-4(m2-2m-3)=16m+16>0,所以m>-1·又因为方程①有一根为0,所以m2-2m-3=0,即(m-3)(m+1)=0·解得m1=-1,m2=3·又因为m>-1,所以m1=-1应舍去,所以m=3·当…  相似文献   

7.
正数学教学离不开解题,但是教学中过分的追求解题技巧,并不是我们的主要目标.我们应该培养学生学会思考,在掌握扎实基础知识的前提下,积累解题经验,获取解题能力,这是解题教学的价值体现.本文从一道填空题的测试分析与反思,来诠释上面的观点,权当抛砖引玉.一、原题解析关于x的一元二次方程x2+kx-1=0的根的情况是()(A)有两个不相等的同号实数根(B)有两个不相等的异号实根(C)有两个相等的实根(D)没有实数根  相似文献   

8.
《代数》第三册第37页中有一结论:若x1、x2是一元二次方程ax2+bx+fc=0的两根,则有ax2+bx+c=a(x-x1)(x-x2).正用或逆用这一结论解题,具有简捷明快、耳目一新的特点.以下从几个方面挖掘其解题功能. 一、分解因式例1 (1997年太原市初中数学竞赛题)在  相似文献   

9.
运用一元二次方程根与系数的关系解题时,常用到以下变形:,.二:,二:维.、扩一Zx .xZ;2.(x,一扩乖:+x扩一4x.年里*1_=兰竺2;4.x一xZx一%2(x.+x护一2x,乓 xlxZ掌握这些变形,可以迅速解题.例1如果,】儿是方程2x2一4x十l=0的两个根,那么五+玉的值为(尤2 xlB .3C .4 D.6解·,一2,一二x t xZ一一十一xZ xl卜.+x护一2x丙x rxZ2:一2、--l____里=6.故选几 l 例2已知关于二的方程二’+2(m一2卜十m,+4=0有两个实数根,并且这两个乏的平方和比两个根的积大21,求m的值.解…方程有两个实数根,…△=〔2(m一2)」一礴(m+4)〕0.整理并解得m感住设二二2为方稼…  相似文献   

10.
在解与实数相关的问题时,常常用到一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac,这里谈谈判别式的具体应用中的一些错解。一、待定系数的求值问题例1.已知关于x的方程x2-mx-n=0的两根的积比两根之和的2倍小12,并且两根的平方和为22,求m,n的值。错解:设两根分别为x1、x2则x1+x2=m,x1x2=-n依题意,得2(x1+x2)-x1x2=12x21+x22=2 2即2m+n=12m2+2n=2 2解得m1=7n1=-272 或m2=-3n2=132 分析:∵方程有两根,∴△≥0即m2+4n≥0,但m1=7,n1=-272时,△<0。不合题意,应舍去。当m2=-3,n2=132时△>0∴m=-3,n=132例2.已知一元二次方…  相似文献   

11.
如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1和x2,那么x1+x2=-a/b,x1x2=c/a,这就是著名的韦达定理.韦达定理的常规证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.本文不借助于一元二次方程的求根公式给出韦达定理的几个新颖别致的证法,供大家参考.  相似文献   

12.
一元二次方程根的判别式和根与系数的关系是初中数学的重点内容.解含有字母系数的一元二次方程时,常常会因对字母系数考虑不周,或对判别式运用不当而产生错误.例1求证:关于方程mx2-(m+2)x+1=0有实数根.错解:当m≠0时,Δ=[-(m+2)]2-4m=m2+4,∵m2≥0,∴m2+4>0.即原方程有两个不相等的实数根.分析:含有字母系数的方程不一定是一元二次方程,所以二次项系数也可能等于0,即应对二次项系数进行分类讨论.应补充:当m=0时,原方程变为-2x+1=0,此方程只有一个实数根x=12.例2关于x的方程mx2-(2m+1)x+m=0,有两个不相等的实数根,求m的取值范围.错解:根据题…  相似文献   

13.
若x1、x2是方程ax2+bx+c=O(a≠O)的两根,则ax_(1)~2+bx1+c=0和ax_(2)~2+bx2+c=0.方程与方程根的这一关系在解题中有着广泛的应用. 例1(1994年河南省中考题)以x2-3x-1=0的两个根的平方为根的一元二次方程是( ). (A)y2-11y+1=0 (B)y2+y-11=0  相似文献   

14.
一、基础知识“若实数x1、x2是方程ax2+bx+c=0(a≠0)的两个根,则x1+x2=-b/a,x1x2=c/a”,这一关系称之为韦达定理;其逆定理是:“若实数x1,x2满足x1+x2=-b/a,x1x2=c/a,则x1,x2是方程ax2+bx+c=a(a≠0)的两个根”,韦达定理及其逆定理在各类数学竞赛中具有广泛的应用,下面举例加以说明:二、应用举例1.用于求方程中参系数的值例1 设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等  相似文献   

15.
美籍匈牙利数学家乔治·波利亚说过:“数学问题的解决仅仅只是一半,更重要的是解题之后的回顾.”因此,要有效地培养数学解题能力,解题后的反思是一个不可缺少的重要环节.进行解题后的反思,能帮助我们总结经验,发现规律,形成技能和技巧;还能触类旁通,有效地提高学习效率.一、思疏漏解题后首先要思考是否有疏漏或错误的地方,以免再起同类错误.例1关于x的方程8x2-(2m2+m-6)x+2m-1=0的两根互为相反数,求m的值.错解设方程的两根为x1,x2,则x1+x2=2m2+m-68=0.解得m1=-2,m2=32,∴m的值为-2或32.反思-2或32都是问题的解吗?上述解题过程正确吗?经检查,…  相似文献   

16.
人教版初中《代数》第三册给出了一个重要的代数恒等式:ax2+bx+c=a(x-x1)(x-x2),其中x1,x2是二次方程ax2+bx+c=0的两个根,也是二次函数y=ax2+bx+c与x轴两个交点的横坐标.巧妙地运用这一恒等式解题可使解题思路明显,过程简捷.下面以若干竞赛题为例说明这一恒等式的应用.  相似文献   

17.
若x0是一元二次方程ax2+bx+c=0的根,那么ax02+bx0+c=0.对于某些求值问题,若能灵活地运用根的定义,便可寻觅到解题捷径,从而快速、简捷获解.一、正向代入巧求值例1如果a是方程X2-3x+1=0的根,那么  相似文献   

18.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.笔者在文[1]中不借助于一元二次方程的求根公式给出了韦达定理的三种代数证法,本文再给出韦达定理  相似文献   

19.
一、由方程的定义确定参数例1若(m2-m-2)x2+mx+3=0是关于x的一元二次方程,则m的取值范围是().(A)m≠-1;(B)m≠2;(C)m≠-1且m≠2;(D)一切实数.解:由一元二次方程的定义,得m2-m-2≠0,∴(m-2)(m+1)≠0,∴m≠2且m≠-1.故选(C).二、由方程根的定义确定参数例2方程x2-12x-m=0的一个根是2,那么m的值是.解:由方程根的定义,把x=2代入方程,得22-12×2-m=0,解得m=-20.三、由方程根的情况确定参数例3已知关于x的一元二次方程(1-2k)x2-2k+1√x-1=0有两个不相等的实数根,求k的取值范围.解:∵方程有两个不相等的实数根,∴△=(-2k+1√)2-4(1-2k)×(-1)=-4k…  相似文献   

20.
若x_1、x_2是方程ax~2+bx+c=0(a≠0)的两根,则ax_1~2+bx_1+c=0和ax_2~2+bx_2十c=0.这种把根代入原方程,即让根"回娘家"的方法在解题中有着独特的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号