首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students’ science achievement and conceptual understanding in the domain of state changes of water, focusing on the concepts of evaporation and condensation. A pretest-posttest design was used that involved 208 third-grade students assigned to the three learning conditions. A science achievement test and a two-tier conceptual test were administered to students before and after a teaching intervention. The results revealed that using virtual preceding physical manipulatives and virtual manipulatives alone enhanced students’ knowledge gains about evaporation and condensation greater than the use of physical laboratory activities alone. It was also found that the combination environment promoted students’ knowledge gains about these concepts equally well as the use of virtual laboratory activities alone. On the other hand, the results showed that using virtual preceding physical manipulatives promoted students’ conceptual understanding most efficiently compared to the use of either physical or virtual manipulatives alone; in contrast, experimenting with physical manipulatives alone was least influential for students’ conceptual understanding compared to the other manipulatives.  相似文献   

2.
In many science education practices, students are expected to develop an understanding of scientific knowledge without being allowed a view of the practices and cultures that have developed and use this knowledge. Therefore, students should be allowed to develop scientific concepts in relation to the contexts in which those concepts are used. Since many concepts are used in a variety of contexts, students need to be able to recontextualise and transfer their understanding of a concept from one context to another. This study aims to develop a learning and teaching strategy for recontextualising cellular respiration. This article focuses on students’ ability to recontextualise cellular respiration. The strategy allowed students to develop their understanding of cellular respiration by exploring its use and meaning in different contexts. A pre- and post-test design was used to test students’ understanding of cellular respiration. The results indicate that while students did develop an acceptable understanding of cellular respiration, they still had difficulty with recontextualising the concept to other contexts. Possible explanations for this ack of understanding are students’ familiarity with the biological object of focus in a context, the manner in which this object is used in a context and students’ understanding of specific elements of cellular respiration during the lessons. Although students did develop an adequate understanding of the concept, they do need more opportunities to practice recontextualising the concept in different contexts. Further research should focus on improving the strategy presented here and developing strategies for other core concepts in science.  相似文献   

3.
Historically, high school chemistry has been the predominate venue for the introduction of food science curriculum to students. With the current decline in chemistry as a required course for graduation, the possibility of exposure to food science in high school could equally decline. The purpose of this research was to determine if high school students in a biology class without a chemistry background could comprehend eight basic food science principles equally as well as students in a chemistry class that were taught the same principles. This study assessed baseline knowledge of high school students, determined the effect of food science‐based lessons on baseline knowledge and level of understanding, and determined the effect of food science‐based lessons on students’ awareness of and interest in food science. Baseline knowledge and awareness of food science was low. Food science‐based instruction resulted in higher posttest scores. Results indicated no differences in students’ knowledge base and level of understanding between biology and chemistry classes and supported the idea of further incorporating a food science curriculum into high school biology.  相似文献   

4.
This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the students’ level of word knowledge manifested in their talk. In this framework, highly developed knowledge of a word is conceptual knowledge. This includes understanding how the word is situated within a network of other words and ideas. The results suggest that students’ level of word knowledge develops toward conceptual knowledge when the students are required to apply the key concepts in their talk throughout all phases of inquiry. When the students become familiar with the key concepts through the initial inquiry activities, the students use the concepts as tools for furthering their conceptual understanding when they discuss their ideas and findings. However, conceptual understanding is not promoted when teachers do the talking for the students, rephrasing their responses into the correct answer or neglecting to address the students’ everyday perceptions of scientific phenomena.  相似文献   

5.
This paper is based on the experience acquired in teaching materials science/engineering to first year university students. It has been observed that students struggle with some of the fundamental materials concepts addressed in the module/course. This applies to delivered lectures but extends to the incorporation of tutorial sessions provided after lectures. Moreover, when students miss a lecture or seminar the acquisition and application of knowledge and concepts becomes problematic. Consequently, or perhaps inevitably, these students perform poorly in their assessments and their motivation for the subject suffers. A careful analysis of this situation and of the nature of interaction and engagement was performed to gain an insight into the reasons for this lack of performance. A common factor is that students do not dedicate sufficient time for reading and consolidation using the chapters/sections prescribed after each topic. They also do not attempt solving tutorial problems outside the formal contact hours. This reflection and personal evaluation is difficult to administer, resource intensive and yet potentially enables each student to monitor and evaluate their own learning and understanding. A multimedia learning technology‐based environment was created in which students could engage. This was located within the University of Wolverhampton Virtual Learning Environment (VLE) called WOLF. The students were able to progress independently but with access to tutor and peer support, help and advice. The use of non‐text animations and structures was used and seen as fundamental by the students in enhancing the taught course and in developing a deeper understanding of complex atomic and crystal structures.  相似文献   

6.
This paper reports a 4-month study that investigated the effectiveness of curriculum materials incorporating the history of science (HOS) on learning science, understanding the nature of science (NOS), and students’ interest in science. With regards to these objectives, three different class contexts were developed with three main types of information in history of science. In the first class context, the similarities between students’ alternative ideas and scientific concepts from the HOS were considered in developing teaching materials. In the second class context, the teacher developed discussion sessions on the ways scientists produce scientific knowledge. In the third class context, short stories about scientists’ personal lives were used without connection to the concepts of science or NOS. Ninety-one eighth-grade students were randomly assigned to four classes taught by the same science teacher. The concepts in the motion unit and in the force unit were taught. Three of the four classrooms were taught using the contexts provided by the HOS while the fourth class was taught in the same way that the teacher had used in previous years. The effects on student meaningful learning, perceptions of the NOS, and interest in science were evaluated at the beginning, at the middle, and at the end of the study to compare differences between historical class contexts and the Traditional Class. Results of analysis showed that the changes in meaningful learning scores for the first class context were higher than other classes but the differences between classes were not significant. The HOS affected student perceptions of the scientific methods and the role of inference in the process of science. Stories from scientists’ personal lives consistently stimulated student interest in science, while discussions of scientific methods without these stories decreased student interest. The positive effects of stories relating scientist’ personal life on student interest in science has major importance for the teaching of science. This research also helps to clarify different class contexts which can be provided with different types and uses of historical information.  相似文献   

7.
This research examined the relationship between content instruction and the development of elementary teacher candidates' understanding of conceptual change pedagogy. Undergraduate students (n = 27) enrolled in two sections of a science methods course received content instruction through either traditional or conceptual change methods, followed by instruction about conceptual change pedagogy. Candidates were interviewed pre- and postinstruction about their content and pedagogical knowledge and also wrote conceptual change lessons. Twelve of the 27 subjects were videotaped teaching in the field. Results indicate that prior to instruction, most candidates had weak content knowledge and held traditional pedagogical conceptions. After instruction, students in the conceptual change group had significantly larger gains in their content knowledge than those in the traditional group, gave qualitatively stronger pedagogical responses, and used conceptual change strategies more consistently in practice. These results indicate that personal experience of learning science content through conceptual change methods facilitated the development of understanding and use of conceptual change pedagogy in teaching practice. Thus if conceptual change methods are to be incorporated into teacher candidates' repertoire, science content courses that students take prior to teacher education should be taught using conceptual change pedagogy. In addition, courses in science education should use pedagogy more in line with that taught in methods courses.  相似文献   

8.
Current reform efforts in science education in the United States call for students to learn science through the integration of science and engineering practices. Studies have examined the effect of engineering design on students’ understanding of engineering, technology, and science concepts. However, the majority of studies emphasize the accuracy of students’ scientific thinking instead of what students’ conceptions are. The aim of this study was to examine elementary school students’ conceptions of sun-Earth relationships as a result of engaging in an engineering design-based science task. Two independent fifth grade classrooms were identified. Each classroom teacher had 2 groups of students: 1 group engaged in traditional science lessons (control) and 1 group engaged in engineering design-based science lessons (treatment). Data were collected via multiple choice knowledge assessments, a draw-and-explain item, and semi-structured interviews designed to elicit students’ working mental models of the relationship between the sun and Earth. Results indicated a range of five different mental models expressed by students in both the control and treatment groups. These findings suggest that students still harbor alternate conceptions and possibly conflicting ideas regarding various sun-Earth relationships. If teachers are expected to implement science and engineering practices, attention must be given to not only what students’ misconceptions are but, more importantly, how best to implement design-based science lessons that facilitate students’ application and understanding of related science concepts.  相似文献   

9.
This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in genetics instruction; and (3) suggests a modified concept mapping assessment tool for both NOS and GCK. A quasi-experimental control group research design was utilized with pretests, posttests, and delayed posttests, combining qualitative data and quantitative data. The experimental group was taught with historical curricular lessons, while the control group was taught with non-historical curricular lessons. The results indicated that students in the experimental group developed better understanding in targeted aspects of NOS immediately after the intervention and retained their learning 2 months after the intervention. Both groups developed similar genetics knowledge in the posttest, and revealed a slight decay in their understanding in the delayed posttest.  相似文献   

10.
Science vocabulary knowledge plays a role in understanding science concepts, and science knowledge is measured in part by correct use of science vocabulary (Lee et al. in J Res Sci Teach 32(8):797–816, 1995). Elementary school students have growing vocabularies and many are learning English as a secondary language or depend on schools to learn academic English. Teachers must have a clear understanding of science vocabulary in order to communicate and evaluate these understandings with students. The present study measured preservice teachers’ vocabulary knowledge during a science methods course and documented their use of science vocabulary during peer teaching. The data indicate that the course positively impacted the preservice teachers’ knowledge of select elementary science vocabulary; however, use of science terms was inconsistent in microteaching lessons. Recommendations include providing multiple vocabulary instruction strategies in teacher preparation.  相似文献   

11.
12.
A peer tutoring scheme has been introduced into the Department of Engineering at the University of Liverpool to help 2nd year undergraduate students tackle conceptual design problems. Conceptual design is an iterative process consisting of a series of generative and evaluative stages, which gradually converge on a preferred conceptual solution. Students are generally less comfortable with the task of generating, evaluating and presenting ideas and this leaves them less able to tackle a conceptual design project without the help and intervention of available teachers or experts. Formally, the students were taught through lectures, coursework and critique sessions. Peer tutors were trained to facilitate group sessions whereby the students were able to discuss ideas, evaluate new concepts, generate solutions and learn to communicate more effectively within a non-threatening environment. The students developed problem-solving skills, became more confident and took more responsibility for their own learning. The peer tutoring process also had a positive effect on the tutors, who felt they had become more responsible and employable, improved their communication and leadership skills and deepened their own understanding of design, as a result of the peer tutoring experience.  相似文献   

13.
This paper is concerned with the process of how subject and pedagogic knowledge emerge through teachers' learning in science. It suggests that problematizing subject knowledge through direct experience of learning in science, particularly in those areas that are known to be difficult, constitutes a productive way of turning a deficit model of teacher subject knowledge into a positive experience with considerable potential for the development of pedagogy. The paper draws on exemplification of student learning to contextualize the discussion within current debate in science education concerned with conceptual change and metacognition. It is argued that the act of addressing what are problematic science concepts in their own learning, affords an opportunity for students to focus on the nature of the concepts being explored and how understanding of them might be developed. It is implied that a notion of ‘learning practice’ in university taught sessions, in addition to the embedded model of generating pedagogic insight through teaching experience in school placements, would constitute a productive mechanism for the synthesis of subject and pedagogic knowledge.  相似文献   

14.
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students’ understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.  相似文献   

15.
ABSTRACT

There is growing interest in how to engage middle school students in science to improve their enthusiasm for science and to arrest the decline in uptake in the senior years. Also, there is interest in improving students’ application of science to real-life situations, a requirement for international tests. One approach that offers hope for improving students’ connections between concepts and context is the context-based approach. Context-based units that connect canonical science with the real-world of the student’s local community have been trialled in the senior years but are new in the middle years. Research in senior classes has shown that students who were taught through a context-based approach demonstrated fluid transitions between the context and concepts in written work and student-student conversations. In the current ethnographic study we built on our previous work and investigated how students make connections between the environmental science concepts and the context of the weekly visits to the local creek. Students were immersed in the real-world context by completing an 11-week environmental science unit that required assessment of the health of a creek. Two assertions emerged; firstly, student-student conversations at the creek afforded students the opportunity for interconnections between environmental science concepts and the context (defined as resonance); and secondly, students’ written reports about the health of the creek demonstrated resonance. Furthermore, group work encouraged students the agency to complete sets of tasks that privileged visually obvious environmental science concepts such as pollution, identification of plants/animals or turbidity/flow rate.  相似文献   

16.
17.
It is a common view that developing teachers’ competence to restructure or reframe their knowledge and beliefs is inevitably a complex challenge. This paper reports on a research project with the aim to develop science teachers’ pedagogical content knowledge (PCK) through their participation in a learning study. A learning study is a collegial process in which teachers work together with a researcher to explore their own teaching activities in order to identify what is critical for their students’ learning. During one semester, three secondary science teachers worked in a learning study together with a researcher in a cyclical process in order to create prerequisites and further identify conditions for students’ learning. During the learning study, data were collected from video-recorded lessons and stimulated recall sessions in which the teachers and the researcher reflected on the lessons to analyze their development of PCK, their students’ learning and the impact of that knowledge on their own teaching. The results provide an insight into how the teachers developed their self-understanding in which they questioned their own epistemological beliefs, aims and objectives of teaching and taken-for-granted assumptions about science teaching and learning. As such, the study provides an understanding of teacher professional learning through a careful investigation of how teachers’ PCK is enhanced through their participation in the learning study, and further, how students’ learning might be developed as a consequence.  相似文献   

18.
In the Materials Department of Imperial College we have introduced a peer tutoring scheme for the first-year subject of crystallography. It is a subject which students find difficult since it involves new concepts, in particular the use of three-dimensional lattices and structures. Formally, the subject is taught through lectures, class work and general tutorial sessions. We have trained peer tutors over 2 days, to understand the need to draw out students so that they work through and think out for themselves some of the more confusing aspects of the subject. Within a very short period of time, the tutors had developed so that, rather than seeing their role as a surrogate teacher, they understood their role to be that of a facilitator. The fact that the peer tutors could use real scientific concepts in their role plays helped to provide a focus. It also ensured that the tutors realized that they really could use group process and discussion to solve even technical problems. The scheme, with its possible pitfalls and solutions, is discussed in the context of materials science. It is found that peer tutoring, which is often used in more discursive subjects, provides an excellent way to effect a more questioning approach to a very technical subject.  相似文献   

19.
Climate change is a complex environmental problem that can be used to examine students’ understanding, gained through classroom communication, of climate change and its interactions. The present study examines a series of four science sessions given to a group of primary school student teachers (n?=?20). This includes analysis of the communication styles used and the students’ pre- and post-conceptualisation of climate change based on results obtained via essay writing and drawings. The essays and drawings concerned the students’ unprompted pre- and post-conceptions about climate change, collected before and after each of the four inquiry-based science sessions (in physics, chemistry, biology and geography). Concept mapping was used in the analysis of the students’ responses. The communication used in the four sessions was analysed with a communicative approach in order to find out the discussion about climate change between teacher and students. The analyses indicated that the students did not have the knowledge or the courage to participate in discussion, but post-conceptualisation map showed that students’ thinking had become more coherent after the four sessions. Given the results of the present study, proposals for using concepts maps and/or communication analysis in studying students’ conceptions are presented.  相似文献   

20.
Abstract

Examining how teachers structure the activities in a unit and how they facilitate classroom discussion is important to understand how innovative technology-rich curricula work in the context of classroom instruction. This study compared 2 enactments of an inquiry curriculum, then examined students' learning outcomes in classes taught by 2 teachers. The quantitative data show that there were significant differences in the learning outcomes of students in classes of the 2 teachers. This study then examined classroom enactments by the 2 teachers to understand the differences in the learning outcomes. This research specifically focused on how teacher-led discussions (a) helped connect the activities within a curriculum unit and (b) enabled deeper conceptual understanding by helping students make connections between science concepts and principles. This study examined the role that teacher facilitation played in helping students focus on the relations between the various activities in the unit and the concepts that they were learning. The results point to important differences in the 2 enactments, helping to understand better what strategies might enable a deeper conceptual understanding of the science content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号