首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在高二解析几何教材的圆锥曲线一章中有这样的一个结论 :若P(x0 ,y0 )是圆 :x2 + y2 =r2 上的一点 ,那么过该点的圆的切线方程是x0 x + y0 y =r2 .(证明见教材 ) .问题 :若点P(x0 ,y0 )在圆x2 + y2 =r2 外(或圆内 )时 ,直线l:x0 x + y0 y =r2 是什么样的直线 ?与圆x2 + y2 =r2 有什么关系 ?不妨设点P(x0 ,y0 )不在坐标轴上 .直线l:x0 x + y0 y =r2 的斜率是kl =-x0y0(y0 ≠ 0 ) ,而kOP =y0x0(x0 ≠ 0 ) .∵klkOP =-1,∴直线l⊥OP .圆心O(0 ,0 )到直线x0 x + y0 y=r2 的距离为d =r2x20 + y20=r2|OP|.①由①可见 ,直线l与圆的关系由|…  相似文献   

2.
1直设线直方线程l的经各过种点形P式都可以统一为点向式0(x0,y0),v=(a,b)为其一个方向向量(ab≠0),P(x,y)是直线上的任意一点,则向量P0P与v共线,根据向量共线的充要条件,存在唯一实数t,使P0P=tv,即x=x0+at,y=y0+bt.消去参数t得直线方程为x-x0a=y-y0b将其变形为b(x-x0)=a(y-y0).易证当ab=0时直线方程也是b(x-x0)=a(y-y0),我们称方程b(x-x0)=a(y-y0)为直线的点向式方程.1)经过点P0(x0,y0)且斜率为k的直线方程:斜率为k的直线方向向量为(1,k),代入点向式得直线方程为k(x-x0)=(y-y0).即为直线方程的点斜式.2)直线斜率为k,在y轴的截距为b,代入点向式得直线方程为k(x-0)=(y-b),也就是直线方程的斜截式.3)经过两点P1(x1,y1),P2(x2,y2)的直线方程:直线方向向量为(x2-x1,y2-y1),代入点向式得直线方程为(y2-y1)(x-x1)=(x2-x1)(y-y1),即为两点式.4)在x轴的截距为a,在y轴的截距为b的直线方程:直线方向向量为(0,b)-(a,0)=(-a,...  相似文献   

3.
在高二教材中的圆锥曲线一章中,有这样的结论: 如图1,若P(x0,y0)是椭圆x2/a2+y2/b2=1(a >b>0)上的一点,那么经过该点的椭圆的切线方程为x0x/a2+y0y/b2=1 问题:若点P(x0,Y0)在椭圆外部(或内部)时, 直线l:x0x/a2+y0y/b2=1是什么样的直线?与椭圆有怎样的关系?  相似文献   

4.
经研究发现,椭圆有如下一个优美性质:定理A为椭圆(x2)1/2(a2)+(y2)1/2(b2)=1(a>b>0)上一个动点,B为直线y=(ab)1/2c上一点,若OA⊥OB,则直线AB与圆x2+y2=b2相切.证明如图1,设直线OA方程为y=kx(k≠0),则直线OB方程为  相似文献   

5.
<正>过圆x2+y2=r2上一点P0(x0,y0)作该圆的切线,只有一条,易知其方程为x0x+y0y=r2.当点P0(x0,y0)在圆x2+y2=r2外时,切线有两条,设切点分别为A、B,那么如何求直线AB的方程呢?本文借助一道高考题展开.例1(2013年山东高考题)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为().(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0  相似文献   

6.
本文介绍直线方程的一种/另类0求法及解题中的广泛应用.如果P(x1,y1),Q(x2,y2)两点坐标满足:Ax1+By 1+C=0,A x 2+By 2+C=0,说明P(x1,y1),Q(x2,y2)两点都在直线A x+By+C=0上,因为两点确定一条直线,所以直线PQ的方程为:Ax+By+C=0,这给出了求直线方程的一种新方法,应用这种方法,能使许多棘手的解析几何问题得到简捷地解决,下面举例说明.例1过点M(4,2)作x轴的平行线被抛物线C:x2=2py(p>0)截得的弦长为4 2.  相似文献   

7.
正问题:如图1,已知圆C:x2+y2=r2与直线l:y=kx+m没有公共点,设点P为直线l上的动点,过点P作圆C的两条切线,A、B为切点。证明:直线lAB恒定过点Q。分析:利用我们常用的一个结论:若点P(x0,y0)是圆x2+y2=r2外一点,则过点P作圆的两条切线,切点分别为A、B,则过A、B两点的直线方程为:x0·x+y0·y=r2。  相似文献   

8.
我们知道,对于二次曲线f(x,y)=0(圆、椭圆)和平面内一点P0(x0,y0),有如下充要条件。(1)若P0(x0,y0)在曲线f(x,y)=0的内部f(x0,y0)<0.(2)若P0(x0,y0)在曲线f(x,y)=0的内部过P0(x0,y0)的直线L恒与曲线f(x,y)=0相交。如果充分利用“点在曲线内部”这一充要条件和性质解题,不仅求解思路清晰、和谐、优美,而且解题过程简捷、明快,可收到事半功倍的效果。下举数例说明。例1.已知圆C:(x-1)2+(y-2)2=25,直线L:(2m+1)y=7m+4(m∈R),证明:不论m取什么实数,直线L与圆恒交于两点。解析:本题的常规解法是:把直线代入圆方程中并整理成有关一元二次方程,…  相似文献   

9.
在直线和圆的教学过程中遇到这样一个问题 :已知圆 C1 :x2 + y2 -2 x + 10 y -2 4=0 ,圆 C2 :x2 + y2 + 2 x + 2 y -8=0 ,求经过两圆交点 A、B的直线 l的方程 .学生在处理这个问题时 ,通常做法有以下两种 :第一种 ,解题模式是 :联立方程组 ,求出交点坐标 ,再根据直线方程的两点式写出所求的直线方程 .具体解法如下 :根据题意 ,联立方程组x2 + y2 -2 x + 10 y -2 4=0  (1)x2 + y2 + 2 x + 2 y -8=0   (2 )(1) -(2 )得 :-4 x + 8y -16=0 ,即x -2 y + 4=0 ,变形得 :x =2 y -4 (3 )将 (3 )代入 (2 )化简整理得 :y2 -2 y =0 ,解得 :y1 =0 ,y…  相似文献   

10.
文 [1 ]、[2 ]分别探讨了直线方程 x0 xa2 +y0 yb2 =1和直线方程 x0 xa2 -y0 yb2 =1的几何意义。两篇论文给出的结论对于研究椭圆和双曲线具有非常重要的意义。其实对于抛物线、圆也有类似的结论 ,作为对两篇论文的补充现给出抛物线与之相关的定理。定理 1 已知P0 (x0 ,y0 )是抛物线 y2 =2 px上的任意一点 ,则直线 y0 y =p(x0 +x)表示此抛物线上以P0 (x0 ,y0 )为切点的切线。证明 当 y0 >0时 ,抛物线的方程可以写成 y =± 2 px,则 y′=± p2 px,所以P0 (x0 ,y0 )为切点的切线的斜率为± p2px0,切线的方程为 y-y0 =± p2 px0(x -x0 ) ,即…  相似文献   

11.
笔者在教学圆一节时,有学生提出了两个很有意思的问题:1.已知圆的方程x2+y2=r2,求经过圆上一点M(x0,y0)的切线方程。这是课本中一道可作结论用的例题,答案是x0x+y0y=r2。他们提出如果点M不在圆上,直线x0x+y0y=r2。又是客观存在的,那么它与圆有怎样的关系呢?  相似文献   

12.
数学问答     
问题 9.过椭圆C:x2/8 y2/4=1上一点P(x0,y0)向圆O:x2 y2=4 引两条切线PA、PB,A、B为切点,如果直线AB与x轴、y轴交于M、N两点. (1)求直线AB的方程(用x0、y0表示). (2)求△MON的最小值(O为原点). (河北晓风)  相似文献   

13.
人教版全日制普高教材《数学》第二册(上),求圆的切线方程,就出现一道例题,一道练习题,一道复习参考题.下面笔者就经过点(x,y),求圆的切线方程给出几种解法,并比较最佳求法.已知圆的方程(x?a)2+(y?b)2=r2,求经过点M(x0,y0)的切线方程.分析根据圆的切线性质,过圆上一点有且只有一条直线和圆相切,过圆外一点有且只有两条直线和圆相切.解法一不妨设切线的斜率为k(若k无解,则表示相应切线斜率不存在,以下同),则切线方程为y?y0=k(x?x0),把y=kx?(kx0?y0)代入(x?a)2+(y?b)2=r2,得222(x?a)+[kx?(kx0?y0+b)]=r,整理得22(1+k)x?2[k(kx0?y0+b)+a]x+222…  相似文献   

14.
对称问题是高中数学中比较重要的内容,它的一般解题步骤是:一、在所求曲线上选一点M(x,y);二、求出这点关于中心或轴的对称点M′(x0,y0)与M(x,y)之间的关系;三、利用f(x0,y0)=0求出曲线g(x,y)=0.直线关于直线对称的问题是对称问题中较难的,但它的解法很多,现以一道典型习题为例给出几种常见解法,供同学们参考.[例题]:试求直线l1:x+y-1=0关于直线l2:3x-y-3=0对称的直线l的方程.解法1:(动点转移法)在l1上任取点P(x′,y′)(P!l2),设点P关于l2的对称点为Q(x,y),则3x′2+x-y′2+y-3=0y′-yx′-x=-13"$$$$#$$$$%&x′=-4x+53y+9y′=3x+54y-3"$$$…  相似文献   

15.
.利用向量模的概念图 1【例 1】 已知点P是直线y=1上的动点 ,Q是OP上的动点 ,且|OP|·|OQ| =1,求动点Q的轨迹方程(如图 1) .解 :设Q(x ,y) ,(y >0 ) ,P(x1 ,1)∵ |OP|·|OQ| =1,∴x21 +1· x2 +y2 =1即 (x21 +1) (x2 +y2 ) =1①又OP ,OQ共线 ,OP∥OQ ,∴x -x1 y =0 ,即x1 =xy ②把②代入① ,并整理 ,得图 2x2 +y2 -x =0(y>0 ) .2 .利用非零向量垂直的充要条件【例 2】 已知圆x2 +(y-1) 2 =1上定点A( 0 ,2 ) ,动点B .直线AB交x轴于点C ,过C与x轴垂直的直线交弦OB的延长线于圆外一点P(如图 2 ) ,求P点的轨迹方程 .解 …  相似文献   

16.
如果直线l经过点A(x0 ,y0 )且斜率为k ,则直线l的方程为y - y0 =k(x -x0 ) ,反过来 ,如果直线l的方程为 :y- y0 =k(x-x0 ) ,那么直线l经过点A(x0 ,y0 ) ,在解题中 ,如果能逆用直线方程的点斜式 ,能简化解题过程 ,现分析几例 ,供参考 .     图 1例 1 曲线 y =4 -x2 + 1与直线 y=k(x- 2 ) + 4有两个交点 ,求k的范围 ,分析 该题若利用解方程的方法来解较繁 ,但若将直线方程变形为 y- 4=k(x- 2 ) ,会发现直线恒过定点A(2 ,4 ) ,这样就可以利用数形结合来解决 .解 将曲线方程变形得x2 + (y- 1) 2 =4  (y≥ 1) ,该曲线是以 (0 ,1)为圆…  相似文献   

17.
最近,我听了一位教师课题为《曲线方程的求法》的一节课.其中一道例题:求圆心在(2,1),且与x2+y2?3x=0的公共弦所在直线过点(5,?2)的圆的方程.解由已知可设圆的方程为x2+y2?4x?2y+F=0.(1)又x2+y2?3x=0,(2)(1)?(2)得?x?2y+F=0.而直线?x?2y+F=0过点(5,?2),把(5,?2)代入?x?2y+F=0,得F=1.因此所求圆的方程为:x2+y2?4x?2y+1=0.评课会上,有人提出:(1)?(2)所得?x?2y+F=0一定是相交弦吗?若不是,它又是什么呢?本文就此展开讨论.不失一般性,设两个不同的圆22O1:x+y+D1x+E1y+F1=022(D1+E1?4F1>0).(3)22O2:x+y+D2x+E2y+F2=022(D2+E2?4F2>0).(4)(3…  相似文献   

18.
基本问题 :已知圆的方程为 x2 + y2 =r2 ,求过圆上一点 P0 (x0 ,y0 )的圆的切线方程。解法 1:若 y0 ≠ 0 ,则所求切线斜率存在 ,设所求方程为 y- y0 =k(x- x0 ) ,代入 x2 + y2 =r2 得 :(1+ k2 ) x2 + (2 ky0 - 2 k2 x0 ) x+ y0 2 + k2 x0 2 -2 kx0 y0 - r2 =0 ,由判别式△ =0得 :(r2 - x0 2 ) k2 + 2 x0 y0 k+ r2 -y0 2 =0。又 x0 2 + y0 2 =r2 ,∴ y0 2 k0 2 + 2 x0 y0 k+ x0 2 =0。即 (y0 k+ x0 ) 2 =0 ,解得 k=- x0 / y0 。故所求切线方程为 y- y0 =- x0 / y0 (x- x0 ) ,即 x0 x+ y0 y=x0 2 + y0 2 亦即 x0 x+ y0 y=r2 。 1当 y0 =0时 ,…  相似文献   

19.
在直线和圆的教学过程中遇到这样一个问题 :已知圆C1:x2 + y2 - 2x + 10 y- 2 4 =0 ,圆C2 :x2 +y2 + 2x + 2 y- 8=0 ,求经过两圆交点A、B的直线l的方程 .学生在处理这个问题时 ,通常做法有以下两种 :第一种 ,解题模式是 :联立方程组 ,求出交点坐标 ,再根据两点式写出所求的直线方程 .具体解法如下 :根据题意 ,联立方程组x2 + y2 - 2x + 10 y- 2 4 =0 ,(1)x2 + y2 + 2x + 2 y- 8=0 . (2 )(1) - (2 ) ,得- 4x+ 8y - 16 =0 ,即x- 2 y + 4=0 ,变形得 x=2 y- 4. (3)将 (3)代入 (2 )化简整理 ,得y2 - 2 y =0 ,解得 y1=0 ,y2 =2 .将 y1=0 ,y2 =2…  相似文献   

20.
在对圆锥曲线的研究中 ,笔者发现了它的一个有趣性质 ,介绍如下 .定理 1 给定抛物线C :y2 =2px(p>0 ) ,O是顶点 ,过y轴上一定点M(0 ,m) (m ≠ 0 )引直线交C于P、Q两点 ,记KOP、KOQ 分别为直线OP、OQ的斜率 ,则KOP+KOQ 为定值2pm .证明 如图 1 ,设P(x1 ,y1 ) ,Q(x2 ,y2 ) ,则yi2 =2pxi(i =1 ,2 ) .又设直线MP的斜率为k(k≠ 0 ) ,则直线MP的方程为x=y-mk ,代入C的方程并整理得ky2 - 2py+2pm =0 .由y1 ,y2 为以上关于y的二次方程的两根知y1 +y2 =2pk ,y1 y2 =2pmk .于是 ,KOP +KOQ =y1 x1 +y2x2 =2py1 +2py2 =2p(y1 +y2 )y1 y2…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号