首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
正题目设a,b,c∈R~+,ab+bc+ca≥3,证明a~5+b~5+c~5+a~3(b~2+c~2)+b~3(c~2+a~2)+c~3(a~2+b~2)≥9.这是2013年浙江省高中数学竞赛试题附加题第21题,本文从一题多解、一题多变角度对这道竞赛题进行研究,希望对读者有所帮助.  相似文献   

2.
2013年浙江省以及2012年甘肃省数学竞赛的不等式证明虽然不难,但因其证明过程中涉及的代数式变形以及方法的灵活性和多样性,对同学们的学习有极大的帮助,故提供几种解法,以飨读者.题目1(2013年浙江省高中数学竞赛试题)设a,b,c∈R~+,ab+bc+ca≥3,证明:a~5+b~5+c~5+a~3(b~2+c~2)+b~3(c~2+a~2)+c~3(a~2+b~2)≥9.  相似文献   

3.
正配方法是中学数学一种最普通、最基本、最简单的方法,它看似平淡无奇,但一些较高难度的数学竞赛试题应用配方法破解,却会收到意想不到的效果,可使问题化难为易、化繁为简.兹举例说明。一、应用配方法破解求值问题例1(2008年庆阳市高中数学竞赛试题)已知实数设a、b、c、d满足a+b+c+d=4,a~2+b~2+c~2+d~2=4,求abcd(1/2)的值.简析对两个已知等式配方得a~2+b~2+c~2+d~2-  相似文献   

4.
代数部分1.本届IMO第1题.2.已知实数a、b、c、d满足a+b+c+d=6.a~2+b~2+c~2+d~2=12.证明:36≤4(a~3+b~3+c~3+d~3)-(a~4+b~4+c~4+d~4)≤48.3.已知x_1,x_2,…,x_(100)是非负实数,且对于  相似文献   

5.
第十三届(1953牛)普特南数学竞赛有这样一道试题: 设实数a,b,c中任意两个之和大于第三个,求证 2/3(a+b+c)(a~2+b~2+c~2) >a~3+b~3+c~3+abc. (1) 事实上,我们有命题设实数a,b,c中任意两个之和大于第二个,则 2/3(a+b+c)(a~2+b~2+c~2) ≥a~3+b~3+c~3+3abc. (2)当且仅当a=b=c时等号成立. 证明:不难验证,(2)式等价于 (b+c-a)(c+a-b)(a+b-c)  相似文献   

6.
完全平方公式(a±b)~2=a~2±2ab+b~2.是整式运算中最重要的公式之一.在数学竞赛中它还能大显身手.例1 (2002年全国初中数学竞赛题)已知 a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式 a~2+b~2+c~2-ab-bc-ac 的值为().(A)0 (B)1 (C)2 (D)3  相似文献   

7.
原命题已知a、b、c∈R~+,且两两不等,求证: 2(a~3+b~3+c~3) >a~2(b+c)+b~2(c+a)+c~2(a+b). 这是高中《代数》(甲种本)第二册复习参考题三(A组)第5题,本文对该题作进一步的探讨。一、原命题的改进和拓广首先指出原命题可改进为命题一已知a、b、c∈R~+,且不全相等,则 2(a~3+b~3+c~3) >a~2(b+c)+b~2(c+a)+c~2(a+b). 其证明参见下面命题二的证明。二、分析探索,拓广命题原命题给出的不等式两边都是齐次式,我们可以从项数和指数两个方面进行推广。命题二已知a、b、c、d∈R~+,则 3(a~3+b~3+c~3+d~3)  相似文献   

8.
本刊1983年第3期“数学问题”栏里有这样一道题:“方程x~3+y~3-3xy+1=0,的图形是什么?作出此图形。”仔细思考,耐人寻味。如果稍作些考察、对比、联想,我们可以发现问题中方程等号左边式子的形式特征酷似我们在初中曾经接触过的问题:“因式分解a~3+b~3+c~3-3abc”。 a~3+b~3+c~3-3abc=(a+b+c)(a~2+b~2+c~2-ab-bc-ca) ……(A)=1/2(a+b+c)[(a-b)~2+(b-c)~2  相似文献   

9.
第三十六届国际奥林匹克数学竞赛第二题: 设a、b、c为正实数,且满足a·b·c=1,试证:1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥3/2(1)。(俄罗斯提供) 证法一 由已知条件a·b·c=1,(1)与下面(2),等价:b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥3/2(2),现用含参数基本不等式:a~2 (λb)~2≥2abλ(λ为参数)的变形:a~2/b≥2λa-λ~2b。因而  相似文献   

10.
正赛题(第四届北方数学邀请赛试题)已知a,b,c为直角三角形的三边长,其中c为斜边长,求使(a~3+b~3+c~3)/(abc)≥k成立的k的最大值.文[1]利用加拿大第一届数学竞赛题:已知a,b,c为直角三角形的三边长,其中c为斜边长,求证:a+b≤2c~(1/2).给出以下证明:  相似文献   

11.
一、余弦定理的向量证明在任意△ABC中,a、b、c为∠A、∠B、∠C的对边,则a~2=b~2+c~2-2bccosA,b~2=a~2+c~2-2accosB,c~2=a~2+b~2-2abcosC(2011年陕西省理科(文科)第18题"叙述并证明余弦定理").(直接来原于课  相似文献   

12.
正题目设a,b,c是不全为零的实数,求F=(ab-bc+c~2)/(a~2+2b~2+3c~2)的取值范围,当a,b,c满足什么条件时F取最大值和最小值.这是2013年全国高中数学联赛安徽预赛试题第11题,本文笔者给出两种解法,以飨读者.解法1(判别式法):先求最大值,设  相似文献   

13.
宋庆老师在文[1]末提出4个猜想.其中猜想4为:已知a,b,c是正数,求证a~2/(a~2+(b+c)~2)+b~2/b~2+(c+a)~2+c~2/c~2+(a+b)~2≥3/5(1);(a~3)/(a~3+(b+c)~3)+(b~3)/(b~3+(c+a)~3)+(c~3)/(c~3+(a+b)~3)≥1/3(2);(a~4)/(a~4+(b+c)~4)+(b~4)/(b~4+(c+a)~4)+(c~4)/(c~4+(a+b)~4)≥3/(17)(3).  相似文献   

14.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

15.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

16.
在初中数学竞赛中,常出现有关整式求值问题. 例1 设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a-b+c=( ). (A)-1 (B)0 (C)1 (D)2 (1999年“希望杯”数学邀请赛初一试题) 解由题意知a=1,b=-1,c=0. 原式=1-(-1)+0=2.故选D. 例2 已知2a~2b~(n-1)与-3a~2b~(2)m是同类项,那么(2m-n)~x=__.(第十五届江苏省初中数学竞赛初一试题) 解由同类项定义知x=2,n-1=2m. 所以2m-n=-1.于是(2m-n)~x=(-1)~2=1. 说明正确掌握有理数、同类项等有关概念是解这类题的关键.  相似文献   

17.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

18.
<正>既然数学题是做不完的,我们就要利用有限的"好题"来提高学生的学习兴趣和思维能力.江苏教育出版社《高中数学必修5》第24页第6题~[1]就是一道"一题多变"的"好题".1 题目呈现在△ABC中,已知2a=b+c,sin~2A=sinBsinC,试判断△ABC的形状.解析根据正弦定理和已知条件sin~2A=sinBsinC,知a~2=bc.再由2a=b+c,得到4a~2=(b+c)~2=b~2+c~2+2bc=4bc,即(b-c)~2=0,故  相似文献   

19.
数论部分 1.本届IMO第4题. 2.证明:每个正有理数都能被表示成(a~3 b~3)/(c~3 d~3)的形式,其中a、b、c、d是正整数。 证明:对于区间(1,2)内的有理数m/n,其中m、n是自然数,我们选择正整数a、b、d,使b≠d,且a~2-ab b~2=a~2-ad d~2,即b d=a,则  相似文献   

20.
第十五届江苏省初中数学竞赛二试初二第14(2)题:已知a(1-b~2)~(1/2)+b(1-a~2)~(1/2)=1,则a~2+b~2=____.这是一道启迪思维、培养创新能力的好题.这里给出两种解法,供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号