首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
均值不等式是高中数学中非常重要的一个不等式类型,要求学生能利用均值不等式a+b≥2√ab,已知a与b的积为定值会求a+b的最值;能充分理解均值不等式的适用条件"一正二定三相等".本文将通过举例来说明如何灵活利用均值不等式求函数的最值.  相似文献   

2.
沈红霞 《数学教学》2005,(10):30-32
均值不等式a+b≥2√ab(a、b∈R^+)不仅可用于证明不等式,也可用于求某些函数的最值,在中学代数里有着非常重要的地位和作用.用均值不等式求最值,总是在当且仅当a=6成立时函数才能取得最值.如。  相似文献   

3.
题若正数a、b满足ab=a+b+3,求ab的最小值.分析这是一道典型的最值问题,容易想到用均值不等式,但我想可能存在别的解法.经过一番探索,我发现即使同样用均值不等式,解法也可不尽相同,直接用可以,对原式变形后再用也可以.我还注意到原式中的ab和a+b,自然想到了韦达定理,于是构造出一元二次方程求解,方法更妙.  相似文献   

4.
不等式a b≥2ab(a、b∈R )(当且仅当a=b时等号成立)a b2≥ab(a、b∈R )(当且仅当a=b是等号成立),其中a b2、ab分别是a与b的算术平均数、几何平均数,故简称其为“均值”不等式或“均值”定理.另外均值不等式可推广为三个(或多个)变元的形式,即:a b c≥33abc(a、b、c∈R )(当且仅当a=b=c时等号成立)a1 a2 a3 … an≥na1a2a3…an(a1,a2,a3,…,an∈R )(当且仅当a1=a2=a3=…=an时等号成立)均值不等式的功能除用于比较数的大小及证明不等式外,主要用于求函数的最值,在使用均值不等式求最值时必须具有三个缺一不可条件,即为:一正:诸元皆正;二定:…  相似文献   

5.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

6.
一、等式与不等式的转化例1若正数a,b满足ab=a+b+3,则ab的取值范围是______.分析为了求ab的取值范围,只要将原等式转化为不等式即可.解运用不等式a+b≥2ab姨,原等式可化为不等式.∵ab=a+b+3≥2ab姨+3,∴ab-2ab姨-3≥0.又ab姨>0,∴ab姨≥3,即ab≥9.例2已知不等式a2+b2+c2+4≤ab+3b+2c,求正整数a,b,c.分析本题所给的是不等式,而求的是a,b,c,故应将原不等式转化为3个等式,才能解决问题.解∵不等式的两边是整数,∴将a2+b2+c2+4≤ab+3b+2c配方得(a-b2)2+3(b2-1)2+(c-1)2≤0.则有a-b2=0,b2-1=0,c-1=0,∴原不等式有唯一的一组解a=1,b=2,c=1.二、常…  相似文献   

7.
均值不等式(a+b)/2≥(ab)~(1/2)(a〉0,b〉0,当且仅当a=b时取"=")是一个重要的不等式,其在求解函数最值问题中有着广泛的应用,下面对均值不等式进行深层解析,供读者参考.  相似文献   

8.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

9.
最值问题是中学数学的重要内容之一,它分布在各个知识板块.学生在学到"均值不等式的应用"时,常感觉到"均值不等式a+b2≥ab/2/1(a〉0,b〉0,当且仅当a=b时等号成立)"这一知识极易理解,但在解题过程中却往往不知道如何运用.在教学中,我整理了均值不等式求最值的解法,以解除学生的学习困惑.  相似文献   

10.
数学科《考试说明》要求学生:1理解不等式的性质及其证明;掌握简单不等式的解法;掌握分析法、综合法、比较法证明简单的不等式.2掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理及其应用.3理解不等式|a|-|b|≤|a+b|≤|a|+|b|.下面介绍高考不等式基础试题考点及解析.考点1 均值不等式定理简单应用例1 (1999年全国高考题)若正数a,b满足ab=a+b+3,则ab的取值范围是.解析:运用均值不等式求和的最小值或积的最大值时,必须具备三个条件:各数为正;和或积为定值;等号应能成立.解:由均值不等式定理得ab=a+b+3≥2ab+3.即(ab+1)(…  相似文献   

11.
均值不等式a+b2≥ab(a>0,b>0,当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值及值域的问题。但是,有些题目必须进行必要的变形才能利用均不等式求解,现本文将讨论均值不等式的应用技巧,供广大师生参考。  相似文献   

12.
同学们都知道,运用二元均值不等式a+b/2≥(ab)~1/2(或a+b≥2(ab)~1/2)可以求出以下两种情况下的最值:①若a·b为定值P,则当a=b时,a+b有最小值2(P)~1/2;②若a+b为定值S,则当a=b时,a·b有最大值1/4S2.初学这部分内容时,不少同学常常出现这样或那样的错误.牢记下面的三条纪律,有助于提高解题的正确率.  相似文献   

13.
均值不等式a2 b≥ab(a>0,b>0,当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题.对于有些题目,可以直接利用公式求解.但有些题目必须进行必要的变形才能利用,下面是一些常用的变形技巧.1配凑1)凑系数例1当00,利  相似文献   

14.
夏琳 《考试周刊》2013,(28):82-83
<正>对a,b∈R*,a+b2≥ab(当且仅当a=b时等号成立),此不等式是证明其他相关不等式的基础,因此此不等式叫做基本不等式.基本不等式是每年高考的热点,且常考常新.考试大纲对基本不等式的教学要求是掌握基本不等式及其变形,了解其证明过程,会用其解决简单的求最值问题.  相似文献   

15.
本文主要对一个对称不等式(已知a,b都为正数,且满足a+b=1,则有a+1/ab+1/b≥254)进行变式探究,并利用均值不等式进行适当的推广.  相似文献   

16.
正例1(1)函数y=1/x与y=-x+4图象的其中一个交点的坐标为(a,b),则1/a+1/b的值为.(2)函数y=1/x与y=x-2图象交点的横坐标分别为a、b,则1a+1b的值为.解析:(1)因为交点(a,b)在函数y=1/x的图象上,所以ab=1;因为交点(a,b)在函数y=-x+4的图象上,所以a+b=4,所以1/a+1/b=(a+b)/ab=4/1=4.  相似文献   

17.
基本不等式a+b≥2槡ab是不等式中的一个重要内容,利用基本不等式求最值问题也是高考中的热点内容.在运用基本不等式求最值问题时要注意"一正,二定,三相等",即"条件中各项为正数,和或积必须为定值,各项相等时取得等号"三个条件.若有任何一个条件没有满足时,结果就有可能出现错误.在[1]中,作者通过一个例子,借助函数图像深刻分析了在乘积不为定值的情况下运用基本不等式求最小值时所出现的一类典型错误.本文将结合实例,进一步分析该类解法的几何特征.[1]中给出的例子是:  相似文献   

18.
平面几何中有切割弦定理 :如图 ,圆O的切线PA(A为切点 )与割线PBC满足关系PA2 =PB·PC .该定理在不等式求最值、求轨迹方程等方面有许多巧妙应用 ,如均值定理 a b2 ≥ab(a ,b>0 )的证明 :在上图中割线PBC过圆心O时 ,设PB =a,PC=b ,则PO =a b2 ,由切割弦定理PA =ab ,显然PO >PA ,再结合a=b有a b2 ≥ ab .再举几例 :例 1 在平面直角坐标系中 ,在y轴的正半轴 (原点除外 )上给定两点A ,B ,试在x轴的正半轴上求点C ,使∠ACB取得最大值 .  解析 本题有多种解法 ,利用切割弦定理十分简便 ,如图 1,过点A ,B作一个圆与x轴的正半…  相似文献   

19.
(本讲适合初中)函数或代数式的最值问题是初中数学竞赛中的热点问题,此类问题涉及的知识点多,解法灵活多样,技巧性强,具有一定的难度.本文以竞赛试题为例,归纳解决此类最值问题的几种常用方法,供参考.1判别式法此法求最值的关键是先构造出关于某个变量的一元二次方程,再根据判别式建立不等式,最后通过解不等式来解决.例1已知a、b为实数,且a~2+ab+b~2=3.若a~2-ab+b~2的最大值为m,最小值为n,求m+n的值.(2008,全国初中数学竞赛天津赛区初  相似文献   

20.
文 [1]的定理 1,2分别为 :定理 1 设 a≠ - 1,b≠ - 1,则 11+ a+11+ b=1成立的充要条件是 ab=1.定理 2 设 a≠ - 1,b≠ - 1,则 a1+ a+b1+ b=1成立的充要条件是 ab=1.我们可将定理 1,2推广为 :定理 3 设 xy≠ 0 ,则 ax+ by=1成立的充要条件是 (x- a) (y- b) =ab(证明略 ) .把定理 3中的 a,b,x,y分别换成 1,1,1+ 1+ b,则得定理 1;把定理 3中的 x,y分别换成 1+ a,1+ b,则得定理 2 .用定理 3解某些最值题或证明某些不等式是比较方便的 ,下面举例说明 .1 求最值例 1 已知 x,y∈ (0 ,+∞ )且 2 x+ y=4,求 1x+ 1y的最小值 .(文 [2 ]例 2 )解 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号