首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
导数这个解题工具进入高中教材以后,为高中数学注入了新的活力。利用导数不但能使某些问题的求解变得轻松、简便,而且为进一步学习高等数学奠定基础。下面举例说明导数在中学阶段的常见应用,供参考。一、求曲线的切线由导数的几何意义可知,函数y=f(x)在x=x_0处的导数即为曲线y=f(x)以P(x_0,f(x_0))为切点的切线的斜率。  相似文献   

2.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

3.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

4.
导数是一个很好的工具 ,应用十分广泛 .在导数教学中 ,如果注意以下常见的八种错误 ,并让学生理解产生错误的原因 ,能够帮助他们迅速把握这部分内容 ,提高学习效率 ,为日后导数的综合应用铺平道路 .1 对导数的定义把握不准致错例 1 若 f(x)在x0 处可导 ,则limΔx→ 0f(x0 -Δx) -f(x0 )Δx =(   )(A) -f′(x0 )   (B) f′(x0 )(C)f′( -x0 )   (D) 2f′(x0 )错解 选B评析 这里函数值的增量f(x0 -Δx)-f(x0 )与自变量的增量Δx =x0 -(x0 -Δx)顺序不一致 ,不符合导数的定义 ,因此答案B是错误的 .应为 :原式 =-limΔx→ 0f(x0 -…  相似文献   

5.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

6.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

7.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

8.
一、导数概念及其经济意义 导数的定义:设y=f(x)在x_0点的某领域内有定义,极限(若存在)表示函数y=f(x)在x_0点的导数,记为f(x_0)。 又由极限性质可知:(→0时)所以,即x·△x比△x是高阶无穷小,于是可以用f(x_0)△x近似代替△y, 记△y≈f(x_0)△x 当△x=l时,△y≈f(x_0) 意即f(x_0)近似地表示在x_0的基础上自变量改变一个单位时,△y的改变量。  相似文献   

9.
<正>函数极值点偏移问题是中学数学中常见问题.例如,已知函数f(x)在区间(a,b)内有一个极值点x_0,且存在x_1、x_2(x_1相似文献   

10.
<正>导数是高考的必考知识点之一,其主要应用是求函数的单调性、极值和曲线的切线方程,本文主要讨论导数与切线方程。函数f(x)在点x_0处的导数f′(x_0)的几何意义是过曲线y=f(x)上点(x_0,f(x_0))的切线的斜率。函数在某点处的导数是函数相应曲线在该点处的切线的斜率。例1在平面直角坐标系xOy中,若曲线y=ax2+b/x(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+  相似文献   

11.
函数f(x)应用导数判断其单调性问题,这是我们常用的方法。但有一点是容易忽略的,这里提出来,引起大家注意。本文主要谈函数f(x)在一点x_0处附近的单调性与f(x)在点x_0处的单调性问题,这两个概念之间的区别及关系。  相似文献   

12.
阮莉华 《考试》2008,(9):23-24
一、导数的概念及其几何意义【例1】(Ⅰ)若函数f(x)在x=x_0处的导数为A,求lim(?)(f(x_0—3h)—f(x_0))/h;(Ⅱ)求函数f(x)=2xlnx在x=3处的切线方程。  相似文献   

13.
在高等数学中,有许多命题(或定理)与充要条件有关.例如;在一元微分学中,函数连续是导数存在的必要条件;函数f(x)在点x_0可微的充分必要条件是函数f(x)在点x_0可导.在二元微分学中,函数z=f(x·y)的偏导数(?)z/(?)x·(?)z/(?)y在点p(x·y)连续,则函数在该点的全微分存在(充分条件).……等等.  相似文献   

14.
引言本文只论及一元微分的应用,一共写了十六个方面.本期登载的是用导数研究函数的部分内容. 一函数的增减性定义设函数y=f(x)在区间(a,b)内有定义,x_1、x_2是区间(a,b)内的任意两点,当x_1f(x_2),那么y=f(x)就称为在区间(a,b)内的减函数.  相似文献   

15.
现行中学课本《微积分初步(甲种本)》(以下简称“课本”)在“二阶导数的应用”一节导出了如下的Taylor公式 f(x)=f(x_0)+f′(x_0)(x-x_0)+1/2f″(§)(x-x_0)~2 (1) 其中f(x)在以x_0,x为端点的闭区间上有二阶导数,§在x_0与x之间。课本利用公式讨论了函数的极值和曲线的凹凸性。本文将介绍几个用它证明不等式的例子。  相似文献   

16.
例已知函数f(x)=2x~2+1/x+λlnx(x>0),f(x)的导数是f'(x)。(Ⅰ)当λ<0时,求证:对于任意的两个不等的正数x_1,x_2,(f(x_1)+f(x_2))/2>f((x_1+x_2)/2);  相似文献   

17.
"反函数"是中学数学中的难点内容之一,学生在学习和应用中极易出现错误.为了避免错误的出现,反函数学习中一些模糊的问题需要澄清.一、关于一个函数存在反函数的条件不是一切函数都有反函数,若函数y=f(x),对于值域中的任一个值y0,在定义域中都有唯一的值x0,使得f(x0)=y0成立,则y=f(x)才有反函数.即只有决定函数的映射是定义域到值域上的一一映射,这个函数才有反函数.(1)若y=f(x)在定义域D上是严格增函数,它有反函数吗?  相似文献   

18.
一、函数的极大值(或极小值)、最大值(或最小值)。极大值(或极小值):函数y=f(x)在点x_0的附近有定义,并且f(x_0)的值比在x_0附近所有各点的函数值都大(或都小),那么f(x_0)是函数f(x)的一个极大值(或极小值)。最大值(或最小值):f(x_0)是函数y=f(x)在点x_0的函数值,如果f(x_0)≥f(x)(或f(x_0)≤f(x)),对于定义域内的任意x都成立,那么f(x_0)是函数f(x)的最大值(或最小值)。注意: 1.极值是一个局部概念,只研究f(x_0)与点x_0左右邻近的点的函数值进行大小比较。最值是一个整体概念,是在整个定义域内比较函数值的大小。 2.在整个定义域内,如果有极大值(或极小值),其极大值(或极小值)有可能不止一个。如果  相似文献   

19.
函数的单调性是函数的一个重要性质,学会判断函数的单调性对学生来说尤为重要。函数单调性的定义是我们判断函数单调性的主要依据。一、判断函数单调性的几种方法1.定义法:一般地,设函数f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1x_2时,都有f(x_1)>f(x_2),那么就说函数f(x)在区间D上是减函数。  相似文献   

20.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号