首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
圆是椭圆的一个极端图形,而圆的性质已为大家所熟知,如何把椭圆方程转化为圆方程呢? 笔者经过探究得到以下结论: 设椭圆方程为x2/a2 y2/b2=1,令x=(a/b)x’,则得圆方程:(x’)2 y2=b2,若令y=(b/a)y’,则得圆方程:x2 (y’)2=a2.用这个结论解题,不仅思路清晰,和谐优美, 而且解题过程简捷明快有新意,可以收到事半功  相似文献   

2.
对于椭圆x2/a2+y2/b2=1,令x’=x/a,y’=y/b,则椭圆方程变为:x’2+y’2=. 1,此为单位圆方程.这样,椭圆问题就可充分利用圆的性质来解决了.举例说明. 例1若直线l:x+2y+t=0与椭圆C:x2/9+y2/4=1相交于两点,求t 的取值范围. 解:令x=3x’,y=2y’,则椭圆C和直线l分别变成圆C’:x'2+y'2= 1和直线l':3x’+4y’+t=0.  相似文献   

3.
<正>题目如图1,已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为31/2/2,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与N.(1)求椭圆的方程;(2)求→TM·→TN的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M,N的任意一点,且直线MP、NP分别与x轴交于R、S,O为坐标原点,求证:|OR|·|OS|为定值.  相似文献   

4.
我们把椭圆x2/a2+y2/b2=1的参数方程{x=acosθ y=bsinθ意一点P(acosθ,bsinθ)的离心角.本文介绍与椭圆的离心角相关的两个有趣性质供读者参考. 性质1 椭圆(或圆)x2/a2+y2/b2=1(a>0,b>0)的两条相交弦AB,CD的四个端点共圆的充要条件是这四个端点的离心角之和为周角的整数倍.  相似文献   

5.
性质1椭圆x2/a2+y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是椭圆上的点,直线OM与ON的斜率之积为-b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2+y2/(1+λ)b21的椭圆;双曲线x2/a2-y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是双曲线上的点,直线OM与ON的斜率之积为b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2-y2/(1+λ)b2=1的双曲线;圆x2+y2=r2,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是圆上的点,直线OM与ON的斜率之积为-1,则动点P的轨迹是方程为x2 +y2=(1+λ2)r2的圆.  相似文献   

6.
椭圆方程(x2/a2)+(y2/b2)=1(a>0,b>0)可转化为x2+((a/b)y)2=a2,于是椭圆可看作是将圆x2+y2=a2的纵坐标变为原来的b/a倍的结果(也可理解为椭圆的纵坐  相似文献   

7.
笔者近日在学习和研究圆锥曲线时,发现圆锥曲线与其切线有关的一个优美的性质,现表述如下,以期与同仁分享. 性质1 已知A,B是椭圆C:x2/a2+y2/b2=1(a>b>0)上不同的两点(不同时在坐标轴上,或kOA·kOB≠-b2/a2),O为椭圆C的中心,椭圆C在点A,B处的切线分别与直线OB,OA相交于P,Q两点.则AB∥PQ. 证明:如图1,设A(x1,y1),B(x2,y2).则切线AP,BQ的方程分别为:x1x/a2+y1y/b2=1,x2x/a2+y2y/b2=1.直线OA,OB的方程分别为:y=y1/x1x,y=y2/x2x由方程组{x2x/a2+y2y/b2=1 y=y1/x1x,解得点Q的坐标为xQ=a2+b2+x1/b2x1x2+a2y1y2,yQ=a2+b2+y1/b2x1x2+a2y1y2.  相似文献   

8.
曲线C在点P(x0,y0)曲率圆是与该曲线C相切于点P(x0,y0)(凹侧)的最大圆,曲率圆的圆心D的轨迹曲线G称为曲线G的渐屈线.抛物线y2=2px(p>0)、椭圆x2/a2+y2/b2=1和双曲线x2/a2-y2/b2=1的渐屈线方程分别为y2=8/27P(x-p)3、x3/(c2/a2/3=1和x3/(c2/a2/3-y3/(c2/b)2/3=1.抛物线、椭圆和双曲线的最小曲率圆都是它们的内切圆,其方程分别为(x-P)2+y2=p2、(x±c2/a)2+y2=b4、(x±c2/a)2+y2=b4/a2.  相似文献   

9.
<正>1.向量知识背景下线段的定比分点问题在椭圆中的渗透例1已知椭圆的中心在原点,焦点在y轴上,焦距为4,离心率为2/3。(1)求椭圆方程;(2)设椭圆在y轴正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段AB所成的比为2,求线段AB所在直线的方程。解:(1)由于椭圆焦点在y轴上,所以可设椭圆方程为y2/a2/a2+x2+x2/b2/b2=1,则由2c=4得c=  相似文献   

10.
<正>若点A(x0,y0)是椭圆x2/a2+y2/b2=1(a>b>0)上的一点,则x02/a2+y02/b2=1,此式可变形为b2x02+a2y02/a2b2=1.这样,就可以将与椭圆有关的一个式子中的1用b2x02+a2y02/a2b2(或a2b2/b2x02+a2y02)代换,从而达到解题的目的.  相似文献   

11.
经研究发现,椭圆有如下一个优美性质:定理A为椭圆(x2)1/2(a2)+(y2)1/2(b2)=1(a>b>0)上一个动点,B为直线y=(ab)1/2c上一点,若OA⊥OB,则直线AB与圆x2+y2=b2相切.证明如图1,设直线OA方程为y=kx(k≠0),则直线OB方程为  相似文献   

12.
<正>焦半径公式:已知F1,F2是椭圆x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c)=c/a,即  相似文献   

13.
我们知道,椭圆是由圆上每个点的横坐标(或纵坐标)压缩(或伸长)原来的若干倍得到的图形.如:椭圆x2/a2 y2/b2=1是由圆x2 y2=a2上每个点的纵坐标压缩为原来的b/a而得到的曲线.因此,圆可以看作是一个特殊的椭圆,它们有很多相似的性质,而圆的很多性质是椭圆没有的.若用圆的性质来解决椭圆问题,解题可以更快捷,更简便.下列的一些椭圆问题,就可以用圆的性质来解决.  相似文献   

14.
新教材明确指出 :将圆按照某个方向均匀压缩 (拉长 )可以得到椭圆因此椭圆与圆之间 ,可以通过伸缩变换转化 .三角函数图象变换中的周期变换和振幅变换实际上就是图象沿x轴和y轴方向上的伸缩变换 .由于我们对圆的性质相对于椭圆来说要熟悉得多 ,因此解决椭圆问题时 ,有时可化为圆来解决 ,只要利用伸缩变换即可 .例 1 求椭圆 x2a2 +y2b2 =1的斜率为k的一组平行弦中点的轨迹方程 .解 作变换 x′ =bax ,y′=y ,则椭圆化成圆x′2 +y′2 =b2 ,平行弦方程y=kx +m化成y′=abkx′ +m .易得在圆内平行弦中点的轨迹是垂直于弦且过圆心的直线y′=-bakx…  相似文献   

15.
在高二教材中的圆锥曲线一章中,有这样的结论: 如图1,若P(x0,y0)是椭圆x2/a2+y2/b2=1(a >b>0)上的一点,那么经过该点的椭圆的切线方程为x0x/a2+y0y/b2=1 问题:若点P(x0,Y0)在椭圆外部(或内部)时, 直线l:x0x/a2+y0y/b2=1是什么样的直线?与椭圆有怎样的关系?  相似文献   

16.
《考试周刊》2015,(88):4-5
<正>1.问题的提出2014年四川省高考理科第20题是这样一道题:已知椭圆C:x2/a2+y2/a2+y2/b2=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的22a b一个端点构成正三角形.(1)求椭圆C的方程;  相似文献   

17.
圆锥曲线有很多优美的几何特征,随着对其研究的逐步深入,新的几何性质不断被发现.下面就是笔者新近发现的椭圆的一个独特性质.定理椭圆的长半轴为a,短半轴为b,中心为O,过椭圆上一点P作长轴的垂线交辅助圆于点A,B,延长半径OA交P点的法线于点C,半径OB交P点的法线于点D,则OC=a b,OD=a-b,CP=PD.图1证明如图1,分别以椭圆的长轴、短轴所在直线为x轴、y轴建立直角坐标系.设椭圆的方程为b2x2 a2y2=a2b2(a>b>0),辅助圆的方程为x2 y2=a2.设P点坐标为P(x0,y0),则b2x20 a2y20=a2b2,过切点P的法线方程为a2y0x-b2x0y=(a2-b2)x0y0.因为AB垂直于x…  相似文献   

18.
《考试周刊》2016,(83):2-3
<正>一、考题重现(2016四川卷)已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(I)求椭圆E的方程及点T的坐标;  相似文献   

19.
性质椭圆x2a2+y2b2=1(a>b>0)上任意一点P与过中心的弦AB的两端点A、B的连线PA、PB与对称轴不平行,则直线PA、PB的斜率之积为定值.证明如图1所示,设P(x,y),A(x1,y1),则B(-x1,-y1).∴x2a2+y2b2=1,①∴x21a2+y21b2=1,②由①-②得x2-x21a2=-y2-y21b2,∴y2-y21x2-x21=-b2a2,∴KPA·KPB=y-y1x-x1·y+y1x+x1=y2-y21x2-x21=-b2a2为定值.这条性质是圆的性质“圆上一点对直径所张成的角为直角”在椭圆中的推广,它充分揭示了椭圆的本质属性,因而能简洁地解决问题.推论若M是椭圆的弦AB之中点,则直线OM与直线AB的斜率之积为定值.证明如图2所…  相似文献   

20.
文献[1]介绍了椭圆(即图1的Γ1)内一个圆(即图1的Γ2)的若干性质,受其启发,笔者对此圆也进行了一些探究,发现了它的另外几个有趣性质,现介绍如下.如图1,设a>b>0,椭圆Γ1的方程为x2/a2+y2/b2=1,其四个顶点分别为A(a,0)、B(0,b)、  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号