首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Environmental and genetic factors influence muscle function, resulting in large variations in phenotype between individuals. Multiple genetic variants (polygenic in nature) are thought to influence exercise-related phenotypes, yet how the relevant polymorphisms combine to influence muscular strength in individuals and populations is unclear. In this analysis, 22 genetic polymorphisms were identified in the literature that have been associated with muscular strength and power phenotypes. Using typical genotype frequencies, the probability of any given individual possessing an “optimal” polygenic profile was calculated as 0.0003% for the world population. Future identification of additional polymorphisms associated with muscular strength phenotypes would most likely reduce that probability even further. To examine the genetic potential for muscular strength within a human population, a “total genotype score” was generated for each individual within a hypothetical population of one million. The population expressed high similarity in polygenic profile with no individual differing by more than seven genotypes from a typical profile. Therefore, skeletal muscle strength potential within humans appears to be limited by polygenic profile similarity. Future research should aim to replicate more genotype–phenotype associations for muscular strength, because only five common genetic polymorphisms identified to date have positive replicated findings.  相似文献   

2.
Abstract

Research concerned with predictors of talent in football has highlighted a number of potentially important and partially inherited measures such as body size, anaerobic power, aerobic capacity, agility, psychological profile, game intelligence and susceptibility to injuries. Genotyping for performance-associated DNA polymorphisms at an early age could be useful in predicting later success in football. The aim of the study was to investigate individually and in combination the association of common gene polymorphisms with football player’s status. A total of 246 Russian football players and 872 controls were genotyped for 8 gene polymorphisms, which were previously reported to be associated with athlete status. Four alleles (ACE D, ACTN3 Arg577, PPARA rs4253778 C and UCP2 55Val) were first identified, showing discrete associations with football player’s status. Next, we determined the total genotype score (TGS, from the accumulated combination of the 4 polymorphisms, with a maximum value of 100 for the theoretically optimal polygenic score) in athletes and controls. The mean TGS was significantly higher in football players (52.0 (17.6) vs. 41.3 (15.5); P < 0.0001) than in controls. These data suggest that the likelihood of becoming a football player depends on the carriage of a high number of “favourable” gene variants.  相似文献   

3.
4.
There are few studies on the relationship between skeletal muscle mass and balance in the young ages. We investigated the relationship between appendicular skeletal muscle mass, isokinetic muscle strength of lower extremity, and balance among healthy young men using relative skeletal muscle index. Thirty men were grouped according to relative appendicular skeletal muscle mass index: higher skeletal muscle group (n = 15) and lower skeletal muscle group (n = 15). Static and dynamic balance abilities were measured using the following: a test where participants stood on one leg with eyes closed, a modified Clinical Test of Sensory Interaction on Balance (mCTSIB) with eyes open and eyes closed, a stability test, and limits of stability test. The muscle strength of lower extremities was measured with an isokinetic analyser in hip, knee, and ankle joints. Participants with higher appendicular skeletal muscle mass were significantly more stable in maintaining dynamic balance than those with lower appendicular skeletal muscle mass. Moreover, appendicular skeletal muscle mass index was positively correlated with dynamic balance ability. Participants with higher appendicular skeletal muscle mass had stronger strength in the lower extremity, and there were significant differences in the isokinetic torque ratios between groups. From these results, it can be inferred that higher appendicular skeletal muscle mass relates to muscle strength and the alteration in the peak torque ratio of the lower extremity, contributing to the maintenance of balance.  相似文献   

5.
System theory is classically applied to describe and to predict the effects of training load on performance. The classic models are structured by impulse-type transfer functions, nevertheless, most biological adaptations display exponential growth kinetics. The aim of this study was to propose an extension of the model structure taking into account the exponential nature of skeletal muscle adaptations by using a genetic algorithm. Thus, the conventional impulse-type model was applied in 15 resistance trained rodents and compared with exponential growth-type models. Even if we obtained a significant correlation between actual and modelled performances for all the models, our data indicated that an exponential model is associated with more suitable parameters values, especially the time constants that correspond to the positive response to training. Moreover, positive adaptations predicted with an exponential component showed a strong correlation with the main structural adaptations examined in skeletal muscles, i.e. hypertrophy (R2 = 0.87, 0.96 and 0.99, for type 1, 2A and 2X cross-sectional area fibers, respectively) and changes in fiber-type composition (R2 = 0.81 and 0.79, for type 1 and 2A fibers, respectively). Thus, an exponential model succeeds to describe both performance variations with relevant time constants and physiological adaptations that take place during resistance training.  相似文献   

6.
7.
Maximal strength training with a focus on maximal mobilization of force in the concentric phase improves endurance performance that employs a large muscle mass. However, this has not been studied during work with a small muscle mass, which does not challenge convective oxygen supply. We therefore randomized 23 adult females with no arm-training history to either one-arm maximal strength training or a control group. The training group performed five sets of five repetitions of dynamic arm curls against a near-maximal load, 3 days a week for 8 weeks. This training increased maximal strength by 75% and improved rate of force development during both strength and endurance exercise, suggesting that each arm curl became more efficient. This coincided with a 17-18% reduction in oxygen cost at standardized submaximal workloads (work economy), and a 21% higher peak oxygen uptake and 30% higher peak load during maximal arm endurance exercise. Blood flow assessed by Doppler ultrasound in the axillary artery supplying the working biceps brachii and brachialis muscles could not explain the training-induced adaptations. These data suggest that maximal strength training improved work economy and endurance performance in the skeletal muscle, and that these effects are independent of convective oxygen supply.  相似文献   

8.
低氧运动诱导的骨骼肌血管内皮细胞生长因子(VEGF)蛋白和基因表达,及毛细血管新生反应都属于速发效应。慢性低氧下调了静息时VEGF及其受体的转录,其能否诱导毛细血管新生的研究结果并不一致。低氧训练可使骨骼肌毛细血管增生,长期低氧训练对安静时骨骼肌VEGFmRNA水平影响不大。慢性低氧和低氧训练均可抑制运动对VEGFmRNA上调的表达效应,对此负反馈现象的时间规律和机制有待进一步研究。  相似文献   

9.
虫源壳聚糖对大鼠运动能力及骨骼肌抗氧化酶系的影响   总被引:1,自引:0,他引:1  
目的:探讨补充不同浓度虫源壳聚糖对大鼠运动能力和骨骼肌抗氧化酶系的影响。方法:对大负荷游泳训练大鼠补充剂量分别为各组平均体重的0.5 g.kg-1、1.0 g.kg-1和2.0 g.kg-1的虫源壳聚糖,在8周大负荷训练结束后测定力竭游泳时间和骨骼肌抗氧化酶系的活性。结果:8周大负荷训练后,虫源壳聚糖大负荷运动组力竭游泳时间均明显长于单纯大负荷运动组,补充2.0 g.kg-1虫源壳聚糖组游泳力竭时间比单纯大负荷运动组延长了25.56%。补充虫源壳聚糖能够显著提高抗氧化酶系活性,虫源壳聚糖0.5 g.kg-1补充组与单纯大负荷运动组相比,CAT和GST酶活性显著升高(P<0.05),但SOD活性无显著差异;虫源壳聚糖1.0 g.kg-1和2.0 g.kg-1补充组与单纯大负荷运动组相比:SOD酶活性显著提高(P<0.05),CAT和GST酶活性升高极为显著(P<0.01)。MDA含量在不同水平虫源壳聚糖补充组均显著低于单纯大负荷运动组(P<0.01)。结论:补充虫源壳聚糖有助于提高训练大鼠的运动能力及骨骼肌抗氧化酶系活性。  相似文献   

10.
This study aimed to determine which contractile properties measured by tensiomyography (TMG) could better differentiate athletes with high- and low-power values, as well as to analyse the relationship between contractile properties and power production capacity. The contractile properties of the vastus medialis (VM), rectus femoris (RF) and vastus lateralis (VL) of an Olympic women’s Rugby Sevens team (n?=?14) were analysed before a Wingate test in which their peak power output (PPO) was determined. Athletes were then divided into a high-power (HP) and a low-power (LP) group. HP presented an almost certainly higher PPO (9.8?±?0.3 vs. 8.9?±?0.4 W kg?1, ES?=?3.00) than LP, as well as a very likely lower radial displacement (3.39?±?1.16 vs. 5.65?±?1.50?mm, ES?=?1.68) and velocity of deformation (0.08?±?0.02 vs. 0.13?±?0.03 mm ms?1, ES?=?1.87) of the VL. A likely lower time of delay was observed in HP for all analysed muscles (ES?>?0.60). PPO was very largely related to the radial displacement (r?=??0.75, 90% CI?=??0.90 to ?0.44) and velocity of deformation (r?=??0.70, 90% CI?=??0.87 to ?0.34) of the VL. A large correlation was found between PPO and the time of delay of the VL (r?=??0.61, 90% CI?=??0.84 to ?0.22). No correlations were found for the contractile properties of RF or VM. These results highlight the importance of VL contractile properties (but not so much those of RF and VM) for maximal power production and suggest TMG as a practical technique for its evaluation.  相似文献   

11.
目的:研究补充FDP补充对骨骼肌力量耐力的影响,为其在运动训练中的应用提供理论依据。方法:16只昆明种雄性成年小鼠,随机分为对照组和FDP组,FDP组每日以3%的FDP溶液0.2ml/10g灌胃,对照组以等体积纯净水灌胃,连续7天。7天后以5%乌拉坦1g/kg经腹腔注射麻醉、固定,利用BL-410生物机能实验系统测定肌肉力量和力量耐力。结果:对照组小鼠骨骼肌最大肌力于5min时显著下降(P〈0.05),FDP组小鼠最大肌力显著下降出现在30min(P〈0.05);各时点肌力下降幅值FDP组显著低于对照组(P〈0.05)。结论:FDP通过改善肌细胞无氧代谢而显著延迟骨骼肌肌力的下降,较长时间维持骨骼肌的收缩张力,有效改善骨骼肌力量耐力。  相似文献   

12.
自由基与骨骼肌损伤   总被引:10,自引:0,他引:10  
综述了自由基与骨骼肌损伤的研究新进展,并对中医药在骨骼肌损伤治疗中的应用现状进行了回顾,对其今后的应用前景进行了展望。  相似文献   

13.
选取20名体能类男性运动员,分为力量训练组和有氧训练组进行为期8周的对照实验。实验发现不同运动对人体成分的改变效果不同,力量训练可以促进骨骼肌的增长,有氧训练可以起到降低体重、减小体脂、抑制骨骼肌增长的作用。  相似文献   

14.
Maximal strength, power, muscle cross-sectional area, maximal and submaximal cycling endurance characteristics and serum hormone concentrations of testosterone, free testosterone and cortisol were examined in three groups of men: weightlifters (n = 11), amateur road cyclists (n = 18) and age-matched controls (n = 12). Weightlifters showed 45-55% higher power values than road cyclists and controls, whereas the differences in maximal strength and muscle mass were only 15% and 20%, respectively. These differences were maintained when average power output was expressed relative to body mass or relative to muscle cross-sectional area. Road cyclists recorded 44% higher maximal workloads, whereas submaximal blood lactate concentration was 50-55% lower with increasing workload than in controls and weightlifters. In road cyclists, workloads associated with blood lactate concentrations of 2 and 4 mmol.l-1 were 50-60% higher and occurred at a higher percentage of maximal workload than in weightlifters or controls. Basal serum total testosterone and free testosterone concentrations were lower in elite amateur cyclists than in age-matched weightlifters or untrained individuals. Significant negative correlations were noted between the individual values of maximal workload, workloads at 2 and 4 mmol.l-1 and the individual values of muscle power output (r = -0.37 to -0.49), as well as the individual basal values of serum total testosterone and free testosterone (r = -0.39 to -0.41). These results indicate that the specific status of the participants with respect to training, resistance or endurance is important for the magnitude of the neuromuscular, physiological and performance differences observed between weightlifters and road cyclists. The results suggest that, in cycling, long-term endurance training may interfere more with the development of muscle power than with the development of maximal strength, probably mediated by long-term cycling-related impairment in anabolic hormonal status.  相似文献   

15.
Abstract

The aim of the study was to assess the relationship between performance-based and laboratory tests for muscular strength and power assessment in older women. Thirty-two women aged 68.8 ± 2.8 years were recruited. All participants were asessed for: (a) two performance-based tests – the box-stepping test (mean 296 ± 51 J) and two-revolution maximum test (mean 7.1 ± 2 kg) performed while pedalling on a cycle ergometer; and (b) muscular function tests – maximal instantaneous peak power jumping on a force platform (mean 1528 ± 279 W); maximal voluntary contraction (MVC) during knee extension (mean 601 ± 571 N) and leg press (mean 626 ± 126 N), and leg press power (mean 483 ± 98 W) on a dynamometer. Using univariate analysis, performance-based tests were compared with laboratory muscle strength and power measurements. Muscle power correlated most strongly with the performance-based tests for both jumping and leg press power (r-values between 0.67 and 0.75; P < 0.01). The correlation with muscle strength measures ranged between 0.48 and 0.61 (P < 0.01). The proposed tests may have particular relevance in geriatric and rehabilitation environments as they represent an easy, practical, and inexpensive alternative for the assessment of muscular strength and power.  相似文献   

16.
The aim of the study was to assess the relationship between performance-based and laboratory tests for muscular strength and power assessment in older women. Thirty-two women aged 68.8 +/- 2.8 years were recruited. All participants were asessed for: (a) two performance-based tests--the box-stepping test (mean 296 +/- 51 J) and two-revolution maximum test (mean 7.1 +/- 2 kg) performed while pedalling on a cycle ergometer; and (b) muscular function tests--maximal instantaneous peak power jumping on a force platform (mean 1528 +/- 279 W); maximal voluntary contraction (MVC) during knee extension (mean 601 +/- 571 N) and leg press (mean 626 +/- 126 N), and leg press power (mean 483 +/- 98 W) on a dynamometer. Using univariate analysis, performance-based tests were compared with laboratory muscle strength and power measurements. Muscle power correlated most strongly with the performance-based tests for both jumping and leg press power (r-values between 0.67 and 0.75; P < 0.01). The correlation with muscle strength measures ranged between 0.48 and 0.61 (P < 0.01). The proposed tests may have particular relevance in geriatric and rehabilitation environments as they represent an easy, practical, and inexpensive alternative for the assessment of muscular strength and power.  相似文献   

17.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad · s -1 and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5 - 7.1 years (mean - s ). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets 2 10 repetitions at 70% body mass load). Strength was reduced for 4 days ( P ? 0.05) but no significant differences ( P > 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6 - 1.1% vs 95.2 - 1.3% of pre-exercise values, P ? 0.05) and drop jump (95.2 - 1.4%, P ? 0.05) performance. Creatine kinase was elevated ( P ? 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

18.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad x s(-1) and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5+/-7.1 years (mean +/- s). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets x 10 repetitions at 70% body mass load). Strength was reduced for 4 days (P< 0.05) but no significant differences (P> 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6+/-1.1% vs 95.2+/-1.3% of pre-exercise values, P< 0.05) and drop jump (95.2+/-1.4%, P< 0.05) performance. Creatine kinase was elevated (P < 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

19.
Abstract

The efficacy of caffeine ingestion in enhancing aerobic performance is well established. However, despite suggestions that caffeine may enhance resistance exercise performance, research is equivocal on the effect of acute caffeine ingestion on resistance exercise performance. It has also been suggested that dampened perception of perceived exertion and pain perception might be an explanation for any possible enhancement of resistance exercise performance due to caffeine ingestion. Therefore, the aim of this study was to examine the acute effect of caffeine ingestion on repetitions to failure, rating of perceived exertion (RPE) and muscle pain perception during resistance exercise to failure. Eleven resistance trained individuals (9 males, 2 females, mean age±SD=26.4±6.4 years), took part in this double-blind, randomised cross-over experimental study whereby they ingested a caffeinated (5 mg kg?1) or placebo solution 60 minutes before completing a bout of resistance exercise. Experimental conditions were separated by at least 48 hours. Resistance exercise sessions consisted of bench press, deadlift, prone row and back squat exercise to failure at an intensity of 60% 1 repetition maximum. Results indicated that participants completed significantly greater repetitions to failure, irrespective of exercise, in the presence of caffeine (p=0.0001). Mean±S.D of repetitions to failure was 19.6±3.7 and 18.5±4.1 in caffeine and placebo conditions, respectively. There were no differences in peak heart rate or peak blood lactate values across conditions (both p >0.05). RPE was significantly lower in the caffeine compared to the placebo condition (p=0.03) and was significantly higher during lower body exercises compared to upper body exercises irrespective of substance ingested (p=0.0001). For muscle pain perception, a significant condition by exercise interaction (p=0.027) revealed that muscle pain perception was lower in the caffeine condition, irrespective of exercise. With caffeine, pain perception was significantly higher in the deadlift and back squat compared to the bench press. However, with placebo, pain perception was significantly higher for the deadlift and back squat compared to the prone row only. Therefore, acute caffeine ingestion not only enhances resistance exercise performance to failure but also reduces perception of exertion and muscle pain.  相似文献   

20.
Abstract

In soccer, strength, power and speed are very important because of the large number of power actions performed during the game. Therefore, the aim of this study was to examine the influence of periodised strength training for power performance more than 2 years. In this study, 134 elite youth soccer players were recruited from two youth training centres. The cohorts were arranged as follows: A (under 19 years), B (under 17 years) and C (under 15 years). The participants in each cohort were divided into two groups. One group (Strength training group [STG]) was subjected to regular soccer training in addition to strength training twice a week for 2 years. The other group (Control group [CG]) completed only the regular soccer training. The strength training was periodised with hypertrophy and intramuscular coordination blocks. For strength training, both the front squat and the back squat were performed once a week. The subjects were tested on the one-repetition maximum (1RM) of the front and back squat and a linear sprint over 30 m. There was significantly better performance from the STG on 1RM (p <0.001). In the sprint, the STG displayed significantly better improvements (p <0.05 to p <0.001) of up to 6%. The effects of strength training are reflected in the sprint performance. Therefore, it seems beneficial for youth to perform strength training to exploit the reserve capacity in sprint performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号