首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
学数学离不开解题,解题离不开解题策略,面对一道数学题,我们应如何合理探求解题思路呢?对此本文作些探讨,仅供参考.一、着眼"定义"事半功倍定义是揭示概念内涵的逻辑方法,优先考虑从定义入手解题,注意挖掘隐含条件,往往可找到解题途径,简化解题途径.【例1】已知椭圆2x52 y92=1,  相似文献   

2.
<正>圆锥曲线的定义在处理与平面几何知识相结合的有关问题时发挥着至关重要的作用.充分利用圆锥曲线的定义及数形结合、转化思想来解题,是解决此类题目的通法.一、椭圆1.椭圆第一定义的应用例1点F为椭圆x2/a2+y2/b2=1(a>b>0)的一个焦点,若椭圆上存在点A,使AOF为正三角形,则椭圆的离心率为()  相似文献   

3.
椭圆是圆锥曲线中的重要内容,也是高考命题的热点、椭圆的定义是研究椭圆的基础,也是解椭圆题的一把金钥题.椭圆给出了2种定义:第一定义:平面内与2个定点F1、F2的距离之和等于常数2a(2a>|F1、F2|)的点的轨迹叫做椭圆;第二定义:到一个焦点和相应准线的距离比是常数e(0相似文献   

4.
解题时,学生往往因忽视题目中的隐含条件,而使求解过程十分繁难甚至于隐入困境,影响解题效率.发掘隐含条件是寻找解题契机,发现解题突破口的有效方法之一,可以事半功倍.一、从相关定义发掘隐含条件,寻找解题契机例1设P为椭圆2x25 y2b2=1(0相似文献   

5.
定义是概括事物本质属性的语句.它既是思维的出发点,又是思维的归宿.利用定义解题往往能收到事半功倍的效果.本文举例说明“回到方程定义”的解题策略的应用,以期帮助同学们拓展思维,提高解题能力. 例 1 已知x2 x-1=0的两根为x1、x2,则(x12 2x1-1)(x22 2x2-1)的值为( ).  相似文献   

6.
著名数学教育家波利亚说过,“回到定义去”是一项重要的智力活动.圆锥曲线的定义深刻地揭示了圆锥曲线的内涵,对解圆锥曲线问题有着广泛的应用,下面举例说明. 一、利用定义直接解题[例1] 已知椭圆x2/25+y2/16=1上一点P到椭圆一个焦点的距离为3,则P到另一个焦点的距离为( )  相似文献   

7.
在求圆锥曲线轨迹方程时用定义解题既方便又快捷 ,但有时审题不清 ,思考不严密 ,造成解题错误 .现举例说明以便引起重视 .例 1 动点 P到直线 x =5的距离与它到点 F ( 1,0 )的距离之比为 3 ,求动点的轨迹方程 .错解 :由定义知 ,点 P的轨迹是椭圆 ,所以 e=33 ,c=1,a2c=5 ,所以 a2 =5 .所以 b2 =a2 -c2 =4.故所求方程为 x25 +y24=1.正解 :设 P( x,y) ,由题意得|5 -x|( x -1) 2 +y2 =3化简得 ( x +1) 212 +y28=1.例 2 已知双曲线的右准线 x =4,右焦点F ( 10 ,0 ) ,离心率 e =2 ,求双曲线方程 .错解 1:因为右准线方程为 x =4,所以 a2c=4,又 c…  相似文献   

8.
解题教学,是提高思维能力的重要环节.那么如何进行解题教学,才能提高思维能力呢?我在多年的教学实践中深深体会到,解题教学中注重发挥学生主体作用,是开发智力培养能力的重要举措.下面谈谈我的一些具体做法和体会.1给学生创造思维活动的机会解答数学问题的关键是思路.在解题教学中不要直接告诉学生思路,而是为学生提供思维活动的平台,引导学生在探究思路的过程中学会思考,让学生既知其然,又知其所以然,从而有效地提高独立分析问题,解决问题的能力.问题1已知椭圆x25+y24=1和直线l∶y=2x+t,问t在什么范围内变化时,椭圆上总有两点关于直线l对称?教学时,不要直接告诉学生解题过程,而是设置如下问题让学生思考:(1)求t的范围一般方法是什么?(解关于t的不等式)(2)根据什么特征来建立关于t的不等式?(具体方法),学生掌握了思维原则,就能从不同的角度探究解题方法.方法1利用判别式设M1(x1,y1),M2(x2,y2)是椭圆上关于直线l对称的两点.直线M1M2与l垂直,可设直线M1M2的方程为y=-x2+m,即x=-2y+2m,代入椭圆方程得21y2-32my+16m2-20=0,则关于y的二次方程有两个不等实根,其充要条件...  相似文献   

9.
三、圆锥曲线的焦点弦问题过焦点的直线与圆锥曲线相交,两个交点的线段叫焦点弦,与焦点弦有关的圆锥曲线问题常用定义(特别是第二定义中的焦半径公式)把问题转化.1.如果弦MN过椭圆的焦点F1,设M(x1,y1),N(x2,y2),则|MN|=a ex1 a ex2=2a e(x1 x2).【例6】设椭圆方程为ax22 by22=1  相似文献   

10.
利用定义解题是一种重要的解题方法,大家在日常教学中对此都较重视。到了总复习阶段,由于感性知识的积累,有必要把定义在解题中的用法进一步挖掘,并加以归纳总结,使之更加明确化。下面以单调函数的定义为例,说明定义在解题中的用法。 例1 已知函数f(x)是定义在(0,∞)上的减函数,且f(x.y)=f(x)+f(y),f(1/2)=1。 (1)求证:f(1)=0;(2)若f(-x)+f(3-x)》-2,求x的取值范围。 解(1)略。  相似文献   

11.
高中解析几何教材给出椭圆、双曲线、抛物线的第一定义和统一定义 ,第一定义展示了三类曲线各自性质及几何特征 ,统一定义则揭示了三类曲线之间内在联系 ,使焦点、离心率、准线等构成统一的整体 ,灵活运用这两种定义求解圆锥曲线的某些问题能达到简捷、合理的解题效果 .现就有关问题举例说明 .一、最值问题【例 1】 已知椭圆x22 5+y29=1及点M( 3 ,1 ) ,F1 、F2 分别是左、右焦点 ,A是椭圆上的动点 ,求|AM|+|AF2 |的最大值 .分析 :根据椭圆的第一定义 ,可用有关|AF1 |来表示|AF2 | ,再利用三角形性质任意两边之和大于第三边 ,…  相似文献   

12.
<正>若点A(x0,y0)是椭圆x2/a2+y2/b2=1(a>b>0)上的一点,则x02/a2+y02/b2=1,此式可变形为b2x02+a2y02/a2b2=1.这样,就可以将与椭圆有关的一个式子中的1用b2x02+a2y02/a2b2(或a2b2/b2x02+a2y02)代换,从而达到解题的目的.  相似文献   

13.
笔者曾碰到这样一个问题:已知椭圆x~2/b~2+y~2/b~2=1的右焦点为F,右准线与x轴的交点为D.在椭圆上存在一点P,使得∠PFD=60°、∠PDF=45°,求该椭圆的离心率e.解题过程如下:  相似文献   

14.
圆是椭圆的一个极端图形,而圆的性质已为大家所熟知,如何把椭圆方程转化为圆方程呢? 笔者经过探究得到以下结论: 设椭圆方程为x2/a2 y2/b2=1,令x=(a/b)x’,则得圆方程:(x’)2 y2=b2,若令y=(b/a)y’,则得圆方程:x2 (y’)2=a2.用这个结论解题,不仅思路清晰,和谐优美, 而且解题过程简捷明快有新意,可以收到事半功  相似文献   

15.
师前 《数学教学》2008,(4):24-26
2007年上海市秋季高考数学试卷中定义了如下的“果圆”概念: 定义1 半椭圆x^2/a^2+y^2/b^2=1(x≥0)与半椭圆y^2/b^2/x^2/c^2=1(x≤0)组成的曲线称为“果圆”,其中a^2=b^2+c^2,a〉0,b〉c〉0.  相似文献   

16.
我们知道,椭圆是由圆上每个点的横坐标(或纵坐标)压缩(或伸长)原来的若干倍得到的图形.如:椭圆x2/a2 y2/b2=1是由圆x2 y2=a2上每个点的纵坐标压缩为原来的b/a而得到的曲线.因此,圆可以看作是一个特殊的椭圆,它们有很多相似的性质,而圆的很多性质是椭圆没有的.若用圆的性质来解决椭圆问题,解题可以更快捷,更简便.下列的一些椭圆问题,就可以用圆的性质来解决.  相似文献   

17.
恰当地运用平几知识,不仅可以简化运算,提高解题速度,而且可以进一步优化思维品质.本文介绍平几知识在有关方面的应用.一、求点例1 已知直线l:x+y-9=0和椭圆C:x2/25+y2/16=1,在直线l上取一点M,以椭圆C的焦点为焦点,并且经过M点作一椭圆,问点M  相似文献   

18.
解析几何的最值问题,往往与代数、三角、几何等诸多知识联系在一起,使问题具有高度的综合性和灵活性。因此常用来考查学生综合运用知识的能力,需引起高度的重视。下面从几个方面谈谈最值问题的解法。一、定义法根据定义解题是最基本的方法,它不仅可以加深学生对概念的理解,而且还可以简化解题过程。正确理解定义,并能灵活运用,有利于快速简便地解决相关问题。(一)利用第一定义例1已知点A(1,1)为椭圆x92+y52=1内一点,F1为椭圆左焦点,P为椭圆上一动点,求|PF1|+|PA|的最值。解析:不论用椭圆的普通方程(设P(x,y)),还是用椭圆的参数方程(…  相似文献   

19.
<正>求解椭圆有关问题时,常常要利用椭圆的四个基本元素a,b,c,e之间的关系(a~2=b~2+c~2,e=c/a)及相应的几何意义.下面举例说明.一、挖掘几何条件,利用椭圆的定义解题例1已知P是以F_1、F_2为焦点的椭圆x~2/a~2+y~2/b~2=1(a>b>0)上一短轴端点  相似文献   

20.
运用伸缩变换,可以将椭圆问题转化为圆问题. 例如图1,椭圆方程为x2/16 y2/25=1,点P坐标(0,3),过点P作直线AB、CD,分别交椭圆于A、B、C、D,AD中点为M,已知kAB·kCD=-25/16,求M点的轨迹方程. 你可以用常规解法试一下,会发现解题过程很烦琐.这里我给你介绍一个小技巧,对题中椭圆进行伸缩变换,把椭圆转换成圆,解法就变简单多了.具体解法如下: 令x=4/(?)x0,y=y0,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号