首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
A bias-corrected estimator of noncentrality parameters of covariance structure models is discussed. The approach represents an application of the bootstrap methodology for purposes of bias correction, and utilizes the relation between average of resample conventional noncentrality parameter estimates and their sample counterpart. The bias-corrected bootstrap estimator can be viewed as a possible alternative to the traditionally used one that is presently implemented in popular covariance structure modeling programs, and is illustrated by means of a numerical example.  相似文献   

2.
This article considers the implications for other noncentrality parameter-based statistics from Steiger's (1998) multiple sample adjustment to the root mean square error of approximation (RMSEA) measure. When a structural equation model is fitted simultaneously in more than 1 sample, it is shown that the calculation of the noncentrality parameter used in tests of approximate fit and in point and interval estimators of other noncentral fit statistics (except the expected cross-validation index) also requires a likeminded adjustment. Furthermore, it is shown that an adjustment is needed in multiple sample models for correctly calculating MacCallum, Browne, and Sugawara's (1996) approach to power analysis. The accuracy of these proposals is investigated and demonstrated in a small Monte Carlo study in which particular attention is paid to using appropriately constructed covariance matrices that give specified nonzero population discrepancy values under maximum likelihood estimation.  相似文献   

3.
The conventional noncentrality parameter estimator of covariance structure models, which is currently implemented in widely circulated structural modeling programs (e.g., LISREL, EQS, AMOS, RAMONA), is shown to possess asymptotically potentially large bias, variance, and mean squared error (MSE). A formal expression for its large-sample bias is presented, and its large-sample variance and MSE are quantified. Based on these results, it is suggested that future research needs to develop means of possibly unbiased estimation of the noncentrality parameter, with smaller variance and MSE.  相似文献   

4.
Research in covariance structure analysis suggests that nonnormal data will invalidate chi‐square tests and produce erroneous standard errors. However, much remains unknown about the extent to and the conditions under which highly skewed and kurtotic data can affect the parameter estimates, standard errors, and fit indices. Using actual kurtotic and skewed data and varying sample sizes and estimation methods, we found that (a) normal theory maximum likelihood (ML) and generalized least squares estimators were fairly consistent and almost identical, (b) standard errors tended to underestimate the true variation of the estimators, but the problem was not very serious for large samples (n = 1,000) and conservative (99%) confidence intervals, and (c) the adjusted chi‐square tests seemed to yield acceptable results with appropriate sample sizes.  相似文献   

5.
Robust maximum likelihood (ML) and categorical diagonally weighted least squares (cat-DWLS) estimation have both been proposed for use with categorized and nonnormally distributed data. This study compares results from the 2 methods in terms of parameter estimate and standard error bias, power, and Type I error control, with unadjusted ML and WLS estimation methods included for purposes of comparison. Conditions manipulated include model misspecification, level of asymmetry, level and categorization, sample size, and type and size of the model. Results indicate that cat-DWLS estimation method results in the least parameter estimate and standard error bias under the majority of conditions studied. Cat-DWLS parameter estimates and standard errors were generally the least affected by model misspecification of the estimation methods studied. Robust ML also performed well, yielding relatively unbiased parameter estimates and standard errors. However, both cat-DWLS and robust ML resulted in low power under conditions of high data asymmetry, small sample sizes, and mild model misspecification. For more optimal conditions, power for these estimators was adequate.  相似文献   

6.
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed‐score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the normality assumption, would be preferred, because it is asymptotically accurate regardless of the distribution of the data. In this article, an analytical formula for the standard error of linear observed‐score equating, which characterizes the effect of nonnormality, is obtained under elliptical distributions. Using three large‐scale real data sets as the populations, resampling studies are conducted to empirically evaluate the normal and general estimators of the standard error of linear observed‐score equating. The effect of sample size (50, 100, 250, or 500) and equating method (chained linear, Tucker, or Levine observed‐score equating) are examined. Results suggest that the general estimator has smaller bias than the normal estimator in all 36 conditions; it has larger standard error when the sample size is at least 100; and it has smaller root mean squared error in all but one condition. An R program is also provided to facilitate the use of the general estimator.  相似文献   

7.
The present study evaluated the multiple imputation method, a procedure that is similar to the one suggested by Li and Lissitz (2004), and compared the performance of this method with that of the bootstrap method and the delta method in obtaining the standard errors for the estimates of the parameter scale transformation coefficients in item response theory (IRT) equating in the context of the common‐item nonequivalent groups design. Two different estimation procedures for the variance‐covariance matrix of the IRT item parameter estimates, which were used in both the delta method and the multiple imputation method, were considered: empirical cross‐product (XPD) and supplemented expectation maximization (SEM). The results of the analyses with simulated and real data indicate that the multiple imputation method generally produced very similar results to the bootstrap method and the delta method in most of the conditions. The differences between the estimated standard errors obtained by the methods using the XPD matrices and the SEM matrices were very small when the sample size was reasonably large. When the sample size was small, the methods using the XPD matrices appeared to yield slight upward bias for the standard errors of the IRT parameter scale transformation coefficients.  相似文献   

8.
The relation among fit indexes, power, and sample size in structural equation modeling is examined. The noncentrality parameter is required to compute power. The 2 existing methods of computing power have estimated the noncentrality parameter by specifying an alternative hypothesis or alternative fit. These methods cannot be implemented easily and reliably. In this study, 4 fit indexes (RMSEA, CFI, McDonald's Fit Index, and Steiger's gamma) were used to compute the noncentrality parameter and sample size to achieve certain level of power. The resulting power and sample size varied as a function of (a) choice of fit index, (b) number of variables/degrees of freedom, (c) relation among the variables, and (d) value of the fit index. However, if the level of misspecification were held constant, then the resulting power and sample size would be identical.  相似文献   

9.
Student growth percentiles (SGPs) express students' current observed scores as percentile ranks in the distribution of scores among students with the same prior‐year scores. A common concern about SGPs at the student level, and mean or median SGPs (MGPs) at the aggregate level, is potential bias due to test measurement error (ME). Shang, vanIwaarden, and Betebenner (SVB; this issue) develop a simulation‐extrapolation (SIMEX) approach to adjust SGPs for test ME. In this paper, we use a tractable example in which different SGP estimators, including SVB's SIMEX estimator, can be computed analytically to explain why ME is detrimental to both student‐level and aggregate‐level SGP estimation. A comparison of the alternative SGP estimators to the standard approach demonstrates the common bias‐variance tradeoff problem: estimators that decrease the bias relative to the standard SGP estimator increase variance, and vice versa. Even the most accurate estimator for individual student SGP has large errors of roughly 19 percentile points on average for realistic settings. Those estimators that reduce bias may suffice at the aggregate level but no single estimator is optimal for meeting the dual goals of student‐ and aggregate level inferences.  相似文献   

10.
本文讨论了线性模型当随机误差为位置分布族时参数的同变估计,并给出了最优同变估计(MREE),结果表明线性模型参数的最优同变估计与最小二乘估计是一致的.  相似文献   

11.
This study examined the effects of ignoring multilevel data structures in nonhierarchical covariance modeling using a Monte Carlo simulation. Multilevel sample data were generated with respect to 3 design factors: (a) intraclass correlation, (b) group and member configuration, and (c) the models that underlie the between-group and within-group variance components associated with multilevel data. Covariance models that ignored the multilevel structure were then fit to the data. Results indicated that when variables exhibit minimal levels of intraclass correlation, the chi-square model/data fit statistic, the parameter estimators, and the standard error estimators are relatively unbiased. However, as the level of intraclass correlation increases, the chi-square statistic, the parameters, and their standard errors all exhibit estimation problems. The specific group/member configurations as well as the underlying between-group and within-group model structures further exacerbate the estimation problems encountered in the nonhierarchical analysis of multilevel data.  相似文献   

12.
This study compared diagonal weighted least squares robust estimation techniques available in 2 popular statistical programs: diagonal weighted least squares (DWLS; LISREL version 8.80) and weighted least squares–mean (WLSM) and weighted least squares—mean and variance adjusted (WLSMV; Mplus version 6.11). A 20-item confirmatory factor analysis was estimated using item-level ordered categorical data. Three different nonnormality conditions were applied to 2- to 7-category data with sample sizes of 200, 400, and 800. Convergence problems were seen with nonnormal data when DWLS was used with few categories. Both DWLS and WLSMV produced accurate parameter estimates; however, bias in standard errors of parameter estimates was extreme for select conditions when nonnormal data were present. The robust estimators generally reported acceptable model–data fit, unless few categories were used with nonnormal data at smaller sample sizes; WLSMV yielded better fit than WLSM for most indices.  相似文献   

13.
Nonrecursive structural equation models generally take the form of feedback loops, involving 2 latent variables that are connected by 2 unidirectional paths, 1 starting with each variable and terminating in the other variable. Nonrecursive models belong to a larger class of path models that require the use of instrumental variables (IVs) to achieve model identification. Prior research has focused on SEM parameter estimation with IVs when indicators were continuous and normally distributed. Much less is known about how estimators function in the presence of categorical indicators, which are commonly used in the social sciences, such as with cognitive and affective instruments. In this study, there was specific interest in comparing the 2-stage least squares (2SLS) estimator and its categorical variant to other recommended estimators. This study compares the performance of several estimation approaches for fitting structural equation models with categorical indicator variables when IVs are necessary to obtain proper model estimates. Across conditions, 1 extension of the nonlinear 2SLS (N2SLS) approach, the nonlinear 3-stage least squares (N3SLS), which accounts for correlated errors among regressors within each model (as does the N2SLS), as well as correlations of errors across models, which N2SLS does not, appears to work the best among methods compared.  相似文献   

14.
Though the common default maximum likelihood estimator used in structural equation modeling is predicated on the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to utilize distribution-free estimation methods. Fortunately, promising alternatives are being integrated into popular software packages. Bootstrap resampling, which is offered in AMOS (Arbuckle, 1997), is one potential solution for estimating model test statistic p values and parameter standard errors under nonnormal data conditions. This study is an evaluation of the bootstrap method under varied conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Accuracy of the test statistic p values is evaluated in terms of model rejection rates, whereas accuracy of bootstrap standard error estimates takes the form of bias and variability of the standard error estimates themselves.  相似文献   

15.
This simulation study demonstrates how the choice of estimation method affects indexes of fit and parameter bias for different sample sizes when nested models vary in terms of specification error and the data demonstrate different levels of kurtosis. Using a fully crossed design, data were generated for 11 conditions of peakedness, 3 conditions of misspecification, and 5 different sample sizes. Three estimation methods (maximum likelihood [ML], generalized least squares [GLS], and weighted least squares [WLS]) were compared in terms of overall fit and the discrepancy between estimated parameter values and the true parameter values used to generate the data. Consistent with earlier findings, the results show that ML compared to GLS under conditions of misspecification provides more realistic indexes of overall fit and less biased parameter values for paths that overlap with the true model. However, despite recommendations found in the literature that WLS should be used when data are not normally distributed, we find that WLS under no conditions was preferable to the 2 other estimation procedures in terms of parameter bias and fit. In fact, only for large sample sizes (N = 1,000 and 2,000) and mildly misspecified models did WLS provide estimates and fit indexes close to the ones obtained for ML and GLS. For wrongly specified models WLS tended to give unreliable estimates and over-optimistic values of fit.  相似文献   

16.
Standard errors computed according to the operational practices of international large-scale assessment studies such as the Programme for International Student Assessment’s (PISA) or the Trends in International Mathematics and Science Study (TIMSS) may be biased when cross-national differential item functioning (DIF) and item parameter drift are present. This bias may be somewhat reduced when cross-national DIF is correlated over study cycles, which is the case in PISA. This article reviews existing methods for calculating standard errors for national trends in international large-scale assessments and proposes a new method that takes into account the dependency of linking errors at different time points. We conducted a simulation study to compare the performance of the standard error estimators. The results showed that the newly suggested estimator outperformed the existing estimators as it estimated standard errors more accurately and efficiently across all simulated conditions. Implications for practical applications are discussed.  相似文献   

17.
A problem central to structural equation modeling is measurement model specification error and its propagation into the structural part of nonrecursive latent variable models. Full-information estimation techniques such as maximum likelihood are consistent when the model is correctly specified and the sample size large enough; however, any misspecification within the model can affect parameter estimates in other parts of the model. The goals of this study included comparing the bias, efficiency, and accuracy of hypothesis tests in nonrecursive latent variable models with indirect and direct feedback loops. We compare the performance of maximum likelihood, two-stage least-squares and Bayesian estimators in nonrecursive latent variable models with indirect and direct feedback loops under various degrees of misspecification in small to moderate sample size conditions.  相似文献   

18.
Bootstrapping approximate fit indexes in structural equation modeling (SEM) is of great importance because most fit indexes do not have tractable analytic distributions. Model-based bootstrap, which has been proposed to obtain the distribution of the model chi-square statistic under the null hypothesis (Bollen & Stine, 1992), is not theoretically appropriate for obtaining confidence intervals (CIs) for fit indexes because it assumes the null is exactly true. On the other hand, naive bootstrap is not expected to work well for those fit indexes that are based on the chi-square statistic, such as the root mean square error of approximation (RMSEA) and the comparative fit index (CFI), because sample noncentrality is a biased estimate of the population noncentrality. In this article we argue that a recently proposed bootstrap approach due to Yuan, Hayashi, and Yanagihara (YHY; 2007) is ideal for bootstrapping fit indexes that are based on the chi-square. This method transforms the data so that the “parent” population has the population noncentrality parameter equal to the estimated noncentrality in the original sample. We conducted a simulation study to evaluate the performance of the YHY bootstrap and the naive bootstrap for 4 indexes: RMSEA, CFI, goodness-of-fit index (GFI), and standardized root mean square residual (SRMR). We found that for RMSEA and CFI, the CIs under the YHY bootstrap had relatively good coverage rates for all conditions, whereas the CIs under the naive bootstrap had very low coverage rates when the fitted model had large degrees of freedom. However, for GFI and SRMR, the CIs under both bootstrap methods had poor coverage rates in most conditions.  相似文献   

19.
Psychometric properties of item response theory proficiency estimates are considered in this paper. Proficiency estimators based on summed scores and pattern scores include non-Bayes maximum likelihood and test characteristic curve estimators and Bayesian estimators. The psychometric properties investigated include reliability, conditional standard errors of measurement, and score distributions. Four real-data examples include (a) effects of choice of estimator on score distributions and percent proficient, (b) effects of the prior distribution on score distributions and percent proficient, (c) effects of test length on score distributions and percent proficient, and (d) effects of proficiency estimator on growth-related statistics for a vertical scale. The examples illustrate that the choice of estimator influences score distributions and the assignment of examinee to proficiency levels. In particular, for the examples studied, the choice of Bayes versus non-Bayes estimators had a more serious practical effect than the choice of summed versus pattern scoring.  相似文献   

20.
A Monte Carlo approach was used to examine bias in the estimation of indirect effects and their associated standard errors. In the simulation design, (a) sample size, (b) the level of nonnormality characterizing the data, (c) the population values of the model parameters, and (d) the type of estimator were systematically varied. Estimates of model parameters were generally unaffected by either nonnormality or small sample size. Under severely nonnormal conditions, normal theory maximum likelihood estimates of the standard error of the mediated effect exhibited less bias (approximately 10% to 20% too small) compared to the standard errors of the structural regression coefficients (20% to 45% too small). Asymptotically distribution free standard errors of both the mediated effect and the structural parameters were substantially affected by sample size, but not nonnormality. Robust standard errors consistently yielded the most accurate estimates of sampling variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号