首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
1.方程思想例1等差数列{an}的前n项和记为Sn.已知a10=30,a20=50(Ⅰ)求通项an;(Ⅱ)若Sn=242,求n.解:(Ⅰ)由an=a1+(n-1)d,a10=30,a20=50,得方程组(?)a1+9d=30,a1+19d=50.解得a1=12,d=2.所以an=2n+10.(Ⅱ)由Sn=na1+(n(n-1))/2d,Sn=242得方程12n+(n(n-1)/2×2=242.解得n=11或n=-22(舍去).2.函数思想例2已知等差数列{an}中,a1≠0,前n项和为Sn,且S1=S2005,S9=Sn,求n的值.解:因为点P(n,Sn)在函数y=d/2x2+(2a1-d)/2x的图象上,且S1=S2005所以抛物线的对称轴为x=1003又S9=Sn,所以(n+9)/2=1003,即n=19973.整体思想例3等差数列{an}的前n项和为Sn,且S10=100,S100=10,求S110.解:S100-S10=a11+a12+…+a100=(a11+a100)/2×90又S100-  相似文献   

2.
试题已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3…(Ⅰ)证明数列{lg(1+an)}是等比数列;(Ⅱ)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项;(Ⅲ)记bn=a1n+an1+2,求数列{bn}的前n项和Sn,并证明Sn+3Tn2-1=1.解(Ⅰ)由a1=2,且点(an,an+1)在f(x)=x2+2x的图象上,所以an+1=a2n+2an>0(n=1,2,3,…)所以llgg((11++aan+n)1)=lg(1lg+(12+ana+n)a2n)=2,所以数列{lg(1+an)}是以2为公比的等比数列.(Ⅱ)由(Ⅰ)知数列{lg(1+an)}的公比为2,第1项为lg3,从而lg(1+an)=2n-1lg3=lg32n-1,即1+an=32n-1(1)因此数列{an}的通项为an=32n-1-1.由(1)得…  相似文献   

3.
全日制普高数学(人教版)第三章第117页例4:已知一个等差数列的前10项的和是310,前20项的和是1220,由此可以确定求其前n项和的公式吗?课本中是将S10=310,S20=l221代入公式Sn=na1+(n(n-1)/2)d,得到方程组.解得a1=4,d=6.即有Sn=3n2+n.  相似文献   

4.
若等差数列{an)的前n项和为Sn,公差为d, 则Sn=na1 1/2n(n-1)d =d/2n2 (a1-d/2)n. 令a=d/2,b=a1-d/2,于是Sn=an2 bn(n=1,2,…). 例1 等差数列的S10=20,S20=60,则S30的值是____. (第四届93年“希望杯”高二1试) 解设前n项和Sn=an2 bn,由题设有(?)20=100a 10b,60=400a 20b.解得(?)a=1/10,b=1. 所以S30=900×1/10 30=120. 例2 已知数列{an)为等差数列,若  相似文献   

5.
设等差数列 {an}是以a1 为首项 ,以d为公差的等差数列 ,其前n项和记作Sn =S(n) .结论 1 若a1 >0 ,且d <0 ,则其数列前n项和有最大值Sn(max) =S( -a1 d) =S( 1-a1 d)=a1 2d(d-a1 ) ,( -a1 d ∈N )或Sn(max) =S( [-a1 d] +1) ,(其中 ,a1 d ∈R+ ,取n=[-a1 d] +1.[x]表示不大于X的整数部分 )证明 :∵a1 >0 ,d<0 ,∴数列 {an}前n项和Sn =S(n)必有最大值 .∴a1 ≥ 0且an+ 1 ≤ 0 ,即a1 +(n-1)d≥ 0且a1 +nd ≤ 0 ,解得n ≤ 1-a1 d 且n ≥-a1 d.讨论 :( 1)当 a1 d ∈N 时 ,则Sn(max) =S( -a1 d)=( -a1 d) +( -a1 d) ( -a1 d -1)2 d=a1 (d-a…  相似文献   

6.
下面请看与两数列的相等项有关的例子.【例1】已知等差数列{an}的公差和等比数列{bn}的公比都是d(d≠0),且a1=b1,a4=b4,a10=b10,求实数a1和d的值.分析:由题意知,an=a1+(n-1)d,bn=b1qn-1=a1dn-1.由a4=b4,a10=b10得a1+3d=a1d3a1+9d=a1d9整理得d6+d3-2=0,解得d3=1或d3=-2.∵d≠1,∴d3=-2,即d=-32.将d=-32代入a1+3d=a1d3,得a1=32.【例2】在等差数列5,8,11,…,302与等差数列3,7,11,…,299中,有多少个相同项?错解:记这两个数列分别为{an}和{bn}.易知an=3n+2,bn=4n-1.设an=bn,则3n+2=4n-1,n=3.所以这两个数列中只有第3项相同.错因:在求两数列{an}与…  相似文献   

7.
“+、-、×、÷”是数学中最基本的运算,但在数列中还是一种特殊的解题技巧,能有效地解决数列中的数学问题,并使其过程显得简捷明快.下面试从4个方面加以说明.一、“+”的技巧等差中项性质,数列求和中的倒序相加,求通项中的累加等,都包含了“+”的技巧.例1在等差数列an中,a1+a2+a3=15,an+an-1+an-2=78,Sn=155,求n.解由a1+an=a2+an-1=a3+an-2,将该6项相加,得a1+a2+a3+an+an-1+an-2=3(a1+an)=15+78,∴a1+an=31,∴Sn=n(a1+an)2=n×312=155,∴n=10.例2求和Sn=C1n+2C2n+3C3n+…+nCnn.解Sn=0C0n+1C1n+2C2n+3C3n+…+nCnn,Sn=nCnn+(n-1)Cn-1n…  相似文献   

8.
在学习等差数列的过程中 ,我们辨证地来理解等差中项 ,以增强运用等差中项的意识 .一、若a ,A ,b成等差数列 ,则 2A =a+b【例 1】 已知a -1,a ,a2 +1成等差数列 ,求数列 {an}的通项公式an.解 :∵a-1,a ,a2 +1成等差数列 ,∴ 2a =(a-1) +(a2 +1) ,解得a =0或 1.当a =0时 ,a1 =-1,d =1,an =-1+(n -1) · 1=n -2 ;当a =1时 ,a1 =0 ,d =1,an =0 +(n-1) · 1=n-1.【例 2】 设 {an}是递增等差数列 ,前三项的和为 12 ,前三项的积为 48,求该数列的首项a1 .解 :∵等差数列 {an}前三项的和为 12 ,∴a1 +a2 +a3=3a2 =12 ,解得a2 =4.又前三项的积为 4…  相似文献   

9.
1n和an之间的对应错位致误例1已知数列1,4,7,10,…,3n 7,求通项an.错解:an=3n 7错因:令n=1,得a1=10,显然10不是第1项,所以3n 7不是数列的第n项.正解:an=1 3(n-1)=3n-2.2利用Sn求an时忽视首项a1致误例2已知Sn=2n 3,求通项an.错解:an=Sn-Sn-1=(2n 3)-(2n-1 3)=2n-1.错因:an=Sn-Sn  相似文献   

10.
一、已知数列{an}的前n项和为Sn,则an={S1,n=1,Sn-Sn-1,n>1例1(浙江2012高考)已知数列{an}的前n项和为Sn,且Sn=2n2+n.求an.解an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]=4n-1,(n∈N*).二、等差数列前n项的和Sn与通项an的关系1.已知等差数列{an}的前n项和为Sn,有  相似文献   

11.
众所周知,等差数列{an}的通项公式an=a1+(n-1)d可变形写成:an=dn+(a1-d),这个式子的几何意义是点列An(n,an)(n∈N+)在直线y=dx+(a1-d)上.同样,等差数列{an}的前n项和公式sn=na1+n(n2-1)d可变形为:snn=a1+n-12d=2dn+(a1-2d),它也可看成是点列An(n,snn)在直线y=2dx+(a1-2d)上.于是得到以下两个结论:结论1等差数列{an}的通项公式an=a1+(n-1)d,则点(1,a1),(2,a2),(3,a3),…,(n,an)…共线.结论2等差数列{an}的前n项和sn=na1+n(n2-1)d,{sn}为等差数列的前n项和组成的数列,则点(1,s11),(2,s22),(3,s33),…,(n,snn)…共线.例1已知等差数列{an},a4=…  相似文献   

12.
例1 在等差数列{an}中,a1=13,试求Sn的最大值. 解法1:由S3=S11得3a1 3×2/2d=11a1 11×10/2d,又a1=13, 所以8a1 52d=0,d=-2, 所以an=13 (n-1)×(-2)=15-2n. 令an≥0,即15-2n≥0,所以n≤7.5. 故当n=7时,Sn最大,且S7=49. 解法2:(同解法1)d=-2,  相似文献   

13.
题目设a0为常数,且an=3n-1-2an-1 (n∈N+) (Ⅰ) 证明对任意n≥1,an=(1)/(5)[3n+(-1)n-1*2n]+(-1)n*2n*a0; (Ⅱ) 假设对于任意n≥1有an>an-1, 求a0的取值范围.  相似文献   

14.
定理 设数列 {an}是以d为公差的等差数列 ,Sn 为 {an}的前n项和 ,记bn=Snn ,则数列 {bn}是以d2 为公差的等差数列 .简证 数列 {an}是以d为公差的等差数列 ,则 Sn =na1+n(n- 1)2 d ,∴bn =Snn =a1+(n- 1)· d2 .易知 {bn}是以a1为首项 ,d2 为公差的等差数列 .利用这一性质 ,可以方便地解决等差数列中某些与前n项和有关的问题 ,方法简练、实用 ,也易于被同学们接受 .下面举例说明 .例 1 设 {an}是等差数列 ,Sn 为数列 {an}的前n项和 .已知S5=2 8,S10 =36 ,求S17.解 记bn =Snn ,由定理知 ,数列 {bn}是等差数列 ,设其公差为d′ ,则d′=…  相似文献   

15.
等差数列 {an}的前 n项和的公式为 Sn =n(a1 + an)2 .当公差 d≠ 0时 ,这个公式通过变式或变换 ,可得到一系列关于 n的二次函数 ,或关于 an的二次函数 ,或关于 n与 an的二次函数 .把等差数列前 n项和的公式直接变形得Sn =12 nan+ a1 2 n (1)把通项公式的变式 an=dn + (a1 -d)代入 (1)式整理得Sn =d2 n2 + (a1 -d2 ) n (2 )把通项公式的变式 n =an+ (d -a1 )d 代入 (1)式整理得Sn =12 da2n+ 12 an + a1 (d -a1 )2 d (3 )把 n =an + (d -a1 )d 仅代入 (1)式中的项a1 2 n后整理得Sn =12 nan+ a1 2 dan + a1 (d -a1 )2 d (4 )把通项公式的变式…  相似文献   

16.
一、项的抽出例1数列邀an妖共有k项(k为定值),它的前n项和Sn=2n2+n(n≤k,nN鄢).现从这k项中抽取某一项(不抽首项和末项),余下的k-1项的平均值是79.(1)求数列邀an妖的通项公式;(2)求数列的项数k,并求抽取的是第几项.分析已知数列前n项和Sn,则可通过公式an=Sn-Sn-1(n≥2)及a1=S1求出邀an妖的通项公式.要想求出“抽取的是第几项”,可假设某项被抽取,再根据题中抽取后的条件及抽取的项仍是邀an妖中的某项(适合邀an妖的通项公式),进行分析求解.解(1)当n≥2时,an=Sn-Sn-1=(2n2+n)-眼2(n-1)2+(n-1)演=4n-1,又a1=S1=2×12+1=3,也符合an=4n-1.…  相似文献   

17.
数列求和一直是高考的热点,因此,正确快速求和就显得尤为重要.对于一般的等差乘等比数列常用错位相减法来求和. 例 求Cn=(2n-1)2n的前n项和. 解:由Sn=1×2+3×22+5×23+…+(2n-1)·2n,得2Sn=1×22+3×23+5×24+…+(2n-1)·2n+1. 两式项减得:-Sn=2+2×22+2×23+…+2×2n-(2n-1)·2n+1.  相似文献   

18.
先看2004年一道高考数学题:已知数列an的前n项和Sn满足Sn=2an+(-1)n(n≥1).(1)写出数列an的前三项a1,a2,a3;(2)求数列an的通项公式;(3)证明:对于任意的整数m>4,都有1/a4+1/a5+…+1/am<87.这是一道涉及探求递推数列的通项公式,特殊数列求和,放缩法证明不等式的题目,有较强的综合性.下面我们主要分析第(3)题.分析1由(1)、(2)可知:an=3/2[2n-2+(-1)n-1](n≥1),从而要证明的不等式可化为:2/1+6/1+1/10+…+3/2·2/(m-3)+(1-1)m-2+2/3·2m-2+(1-1)m-1<7/8.显然该不等式左边无法直接求和,此时应先对左边每一项进行放大变形,然后再求和.但考虑到左…  相似文献   

19.
有些探索型问题常可归结为求二元不等式组特解的问题,因此如何探求二元不等式组的特解就成了学生必须掌握的技能.探究解决这类问题似可从以下6种途径找到突破口.1 用不等式传递性消去一个元作为突破口例1 (1992年全国高考题)等差数列{an}中,a3=12,S12>0,S13<0,(1)求公差d的取值范围;(2)指出S1,S2,S3,…,S12中,哪一个值最大,并说明理由.分析:(1)略;(2)由(1)知:-2473,可得:d≥-12n-3d≤-12n-2,又-24…  相似文献   

20.
下面用数列知识解答二道物理问题.【例1】 A、B两点相距s,将s平分为n等分,今让一物体(可视为质点)从A点由静止开始向B做匀加速运动,但每过一个等分点,加速度都增加an,试求该物体到达B点的速度.解析:设物体经过第1,2,3,…,n段路程后的速度分别为v1,v2,v3,…,vn则有v21=2asn,v22-v21=2a(1+1n)sn,v23-v22=2a(1+2n)sn,……,v2n-v2n-1=2a(1+n-1n)sn,将上述各式两端分别相加后得v2n=2asn[1+(1+1n)+(1+2n)+……+(1+n-1n)]=2asn[n+(1n+2n+……+n-1n)].上式中的1n+2n+……+n-1n为一项数为n-1的等差数列的和,其和为1n[1+2+……+(n-1)]1n·1+(n-1)2…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号