首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research in Science Education - This study aims to understand interactions in Korean elementary science classrooms, which are heavily influenced by Confucianism. Ethnographic observations of two...  相似文献   

2.
Soysal  Yilmaz 《Science & Education》2022,31(3):739-785
Science & Education - The paper reports qualitative findings from a study about how science teachers enacted discursive purposes and talk moves to support the students’ experiments....  相似文献   

3.
4.
There is a current national emphasis on science, technology, engineering, and mathematics (STEM). Additionally, many states are transitioning to the Next Generation Science Standards (NGSS), which encourage teachers to incorporate engineering in science classrooms as well as have their students learn science by doing science. Methods courses are also shifting to adequately prepare preservice science teachers in these areas. This study examines preservice science teachers’ pre- and post-ideal inquiry-based lesson plan scenarios before and after intervention in their Secondary Science Methods I and II courses. These preservice science teachers participated in a variety of opportunities to practice authentic science inquiry (ASI) pedagogical techniques as well as integrated STEM topics, with a particular emphasis on computer programming throughout their 80 h of Methods instruction. ASI is a type of inquiry where students learn science by conducting science research in a grade-appropriate manner. Thirty-eight preservice teachers’ scenarios were analyzed using a rubric from Spuck (2014) to determine the degree to which the ten components of ASI were included in scenarios pre- to post-instruction. Trends in ASI component inclusion are discussed. These findings indicate that preservice science teachers are proficient at writing inquiry-based lessons where they planned opportunities for their future students to collaborate, use scientific instrumentation, and collect and analyze data, but need additional support with developing student activities where students create testable questions, revise their question and methods, participate in peer review, and disseminate their results to their peers or the larger scientific community. Overall, the results suggest Methods instruction should reinforce preservice teachers’ focus on planning lessons which include opportunities for all ASI components. Interventions in the aforementioned areas of weak inclusion may be beneficial to preservice teachers.  相似文献   

5.
Futures thinking involves a structured exploration into how society and its physical and cultural environment could be shaped in the future. In science education, an exploration of socio-scientific issues offers significant scope for including such futures thinking. Arguments for doing so include increasing student engagement, developing students?? values discourse, fostering students?? analytical and critical thinking skills, and empowering individuals and communities to envisage, value, and work towards alternative futures. This paper develops a conceptual framework to support teachers?? planning and students?? futures thinking in the context of socio-scientific issues. The key components of the framework include understanding the current situation, analysing relevant trends, identifying drivers, exploring possible and probable futures, and selecting preferable futures. Each component is explored at a personal, local, national, and global level. The framework was implemented and evaluated in three classrooms across Years 4?C12 (8 to 16-year olds) and findings suggest it has the potential to support teachers in designing engaging science programmes in which futures thinking skills can be developed.  相似文献   

6.
One of the challenges of implementing a new curriculum is how to bridge the gap between the underlining principles of the curriculum and the cultural and social orientations of the society which includes teachers and students. This article reports on a study that explored how the cultural and social orientations of teachers and students can influence the implementation of a constructivist curriculum in mathematics classrooms. The data for the study came from 250 students and 41 mathematics teachers, using questionnaires, observations, and interviews. The results showed that inasmuch as mathematics teachers and their students acknowledge the importance of student’s active participation and teamwork, these practices have not been fully conceptualised into the Ghanaian mathematics classroom due to some cultural factors. Two main cultural factors were discovered from the analyses of the results. Firstly, the culture of acknowledging only correct answers in class has a negative impact on individual students’ confidence and participation during mathematics lessons. Also, the culture of teamwork is not fully accepted within Ghanaian classrooms as most students find it difficult working in groups and accepting and appreciating each other’s view. It was evident in all lessons that students were ridiculed by their peers when they provide a wrong answer to a question and this affected individual students’ participation in the classroom. Therefore, we suggested that teachers should be pro-active in promoting a classroom environment which is free from fear and intimidation to motivate students to be actively involved in the classroom discourse.  相似文献   

7.
ABSTRACT

High school teachers' classroom behaviors were observed and compared with their behaviors in the computing environment to determine whether or not the computer might act as a catalyst to promote facilitative behavior in teachers. No significant difference was found in terms of increased facilitative behavior in computer classrooms. However, female teachers adopted more facilitative postures in the computing environment than did male teachers, and the teachers with the greatest number of years of experience in teaching with computers appeared to exhibit more directive postures in both the regular and computing setting than did teachers with fewer years of experience. Implications of this for teacher education are discussed.  相似文献   

8.
Although the importance of language in science learning has been widely recognized by researchers, there is limited research on how science teachers perceive the roles that language plays in science classrooms. As part of an intervention design project that aimed to enhance teachers’ capacity to address the language demands of science, interview data (N = 9) were collected to understand teachers’ perceptions and experiences with a wide range of issues related to language use in science classrooms. Adopting an interpretive approach to qualitative data, the analysis revealed that the teachers perceive a wide range of student difficulties related to language use in science classrooms, especially to the use of specialized terms and writing. Although the teachers are keenly aware of how language can be a barrier to learning science, they are less certain as to what students need to know about the language of science in order to master it. The findings suggested professional support that highlights the distinctive language demands of science and how these demands differ from other subject areas could be useful to these elementary school teachers.  相似文献   

9.
Studies have shown that there is a need for pedagogical content knowledge among science teachers. This study investigates two primary teachers and their objectives in choosing inquiry- and context-based instructional strategies as well as the relation between the choice of instructional strategies and the teachers’ knowledge about of students’ understanding and intended learning outcomes. Content representations created by the teachers and students’ experiences of the enacted teaching served as foundations for the teachers’ reflections during interviews. Data from the interviews were analyzed in terms of the intended, enacted, and experienced purposes of the teaching and, finally, as the relation between intended, enacted, and experienced purposes. Students’ experiences of the teaching were captured through a questionnaire, which was analyzed inductively, using content analysis. The results show that the teachers’ intended teaching objectives were that students would learn about water. During the enacted teaching, it seemed as if the inquiry process was in focus and this was also how many of the students experienced the objectives of the activities. There was a gap between the intended and experienced objectives. Hardly any relation was found between the teachers’ choice of instructional strategies and their knowledge about students’ understanding, with the exception that the teacher who also added drama wanted to support her students’ understanding of the states of water.  相似文献   

10.
Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of ‘Density’ was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified from the 55-item questionnaire, namely, ‘focussing on science learning’, ‘facilitating students’ understanding’, ‘encouraging students’ involvement’, ‘creating conducive environment’, ‘encouraging active experimentation’ and ‘preparing students for exam (PSE)’. Significant gaps between teachers’ and students’ conceptions on certain dimensions have been revealed. The inconsistency on the dimension ‘PSE’ is particularly evident and possible reasons for the phenomenon are suggested. This study raises the important questions of how the gap can be addressed, and who is to change in order to close the gaps. Answers to these questions have huge implications for teacher education and teacher professional development.  相似文献   

11.
This study presents findings from a survey of secondary special education teachers who teach reading. Respondents were 577 special education teachers from a large Midwestern state who completed an online or mail survey. Results based on quantitative and qualitative analyses indicate predominant foci of secondary special education teachers’ reading instructional practices were teaching vocabulary and comprehension, engaging in ongoing formative assessment, and incorporating technology into instruction. Major themes included the widespread use of commercial reading programs and a bifurcation of instructional roles. These findings are discussed in relation to the national discourse on adolescent literacy and current schooling initiatives including the Common Core State Standards and Multi-tiered Systems of Support.  相似文献   

12.
13.
Research in Science Education - Student teachers struggle to identify themselves as teachers in their field placement during their student teaching year, and some of the difficulty can be...  相似文献   

14.
Teachers need an understanding of the nature of science (NOS) to enable them to incorporate NOS into their teaching of science. The current study examines the usefulness of a strategy for challenging or changing teachers’ understandings of NOS. The teachers who participated in this study were 10 initial teacher education chemistry students and six experienced teachers from secondary and primary schools who were introduced to an explicit and reflective activity, a dramatic reading about a historical scientific development. Concept maps were used before and after the activity to assess teachers’ knowledge of NOS. The participants also took part in a focus group interview to establish whether they perceived the activity as useful in developing their own understanding of NOS. Initial analysis led us to ask another group, comprising seven initial teacher education chemistry students, to take part in a modified study. These participants not only completed the same tasks as the previous participants but also completed a written reflection commenting on whether the activity and focus group discussion enhanced their understanding of NOS. Both Lederman et al.’s (Journal of Research in Science Teaching, 39(6), 497–521, 2002) concepts of NOS and notions of “naive” and “informed” understandings of NOS and Hay’s (Studies in Higher Education, 32(1), 39–57, 2007) notions of “surface” and “deep” learning were used as frameworks to examine the participants’ specific understandings of NOS and the depth of their learning. The ways in which participants’ understandings of NOS were broadened or changed by taking part in the dramatic reading are presented. The impact of the data-gathering tools on the participants’ professional learning is also discussed.  相似文献   

15.
The purpose of this study was to examine the experiences of preservice elementary teachers in a content-specific field-based experience with elementary science specialists. Data collected from electronic discussions, interviews, and observations in the field revealed preservice teachers experienced a wide range of instructional and assessment strategies in specialists’ classrooms, but failed to generalize aspects of the specialist model of science instruction to traditional models for delivery of science instruction at the elementary level. Implications for supporting preservice teachers’ learning to teach science through participation in a field experience with specialists are discussed.  相似文献   

16.
Research in Science Education - Given that interest is associated with learning in educational research, understanding how its development can be supported in different learning contexts represents...  相似文献   

17.
In this article, I study, from the point of view of the analytic philosophy of mind, the compatibility of students’ ideas studies (SIS) with radical constructivism (RC). I demonstrate that RC is based on a psychology of narrow mental states; that is, the idea that the mental content of an individual can be fully characterised without any reference external to her or him. I show that this fact imposes some severe restrictions to SIS to be incorporated into RC. In particular, I argue that only qualitative studies can comply with the requirement of narrowness. Nevertheless, I propose that quantitative works can be employed as sources of types in order to study token actual students. I use this type-token dichotomy to put forward an outline of a theory of the relation between school contents and mental contents. In this view, token mental contents regarding a given topic can be defined, and probed, only by resorting to typical school contents.  相似文献   

18.
This study examined how instructional challenges presented by gifted students shaped teachers’ instructional strategies. This study is a qualitative research grounded in a social constructivist framework. The participants were three high school science teachers who were teaching identified gifted students in both heterogeneously- and homogeneously-grouped classrooms. Major data sources are classroom observations and interviews. Data analysis indicated that these science teachers developed content-specific teaching strategies based on their understanding of gifted students, including: (a) instructional differentiation, e.g., thematic units, (b) variety in instructional mode and/or students’ products, (c) student grouping strategies and peer tutoring, (d) individualized support, (e) strategies to manage challenging questions, (f) strategies to deal with the perfectionism, and (g) psychologically safe classroom environments.  相似文献   

19.
The research reported in this study examines the very first time the participants planned for and enacted science instruction within a “best-case scenario” teacher preparation program. Evidence from this study indicates that, within this context, preservice teachers are capable of implementing several of the discursive practices of science called for in standards documents including engaging students in science investigations and constructing evidence-based explanations. The participants designed experiences that allowed their students to interact with natural phenomena, gather evidence, and craft explanations of natural phenomenon. The study contends that the participants were able to achieve such successes due to their participation in a teacher education program and field placement, which were designed using a comprehensive, conceptual framework. Video of the participant’s teaching and annotated self-analysis videos served as the primary data for this study. Implications for future research and elementary science teacher education are discussed.  相似文献   

20.
The purpose of this study was to examine changes in the quality of science teachers’ argumentation as a result of their engagement in a teacher workshop on earthquake engineering emphasizing distributed learning approaches, which included concept mapping, collaborative game playing, and group lesson planning. The participants were ten high school science teachers from US high schools who elected to attend the workshop. To begin and end the teacher workshop, teachers in small groups engaged in concept mapping exercises with other teachers. Researchers audio-recorded individual teachers’ argumentative statements about the inclusion of earthquake engineering concepts in their concept maps, which were then analyzed to reveal the quality of teachers’ argumentation. Toulmin’s argumentation model formed the framework for designing a classification schema to analyze the quality of participants’ argumentative statements. While the analysis of differences in pre- and post-workshop concept mapping exercises revealed that the number of argumentative statements did not change significantly, the quality of participants’ argumentation did increase significantly. As these differences occurred concurrently with distributed learning approaches used throughout the workshop, these results provide evidence to support distributed learning approaches in professional development workshop activities to increase the quality of science teachers’ argumentation. Additionally, these results support the use of concept mapping as a cognitive scaffold to organize participants’ knowledge, facilitate the presentation of argumentation, and as a research tool for providing evidence of teachers’ argumentation skills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号