首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
我们知道,柯西不等式:a_i,b_i∈R,则sum from i=1 to n a_i~2 sum from i=1 to n b_i~2≥(sum from i=1 to n a_ib_i)~2……(1)当且仅当a_i=kb_i(i=1,2,…,n)不等式等号成立。它可以作如下变形: 由(1)得(sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2)≥sum from i=1 to n a_ib_i,添项变为sum from i=1 to n a_i~2 2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≥sum from i=1 to n a_i~2 2sum from i=1 to n a_ib_i sum from i=1 to n b_i~2,或sum from i=1 to n a_i~2-2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≤sum from i=1 to n a_i~2-2 sum from i=1 to n a_i b_i sum from i=1 to n b_i~2,分别配方,并开方转  相似文献   

2.
本文介绍的勾股不等式的证明很简单,它在应用中却很方便。命题若a≥0,b≥0,c≥0,且a~2+b~2=c~2,则 a+b≤2~(1/2)c (1) 当且仅当a=b时取等号。证明据题设,利用a~2+b~2≥2ab,得 (a+b)~2=a~2+b~2+2ab≤2(a~2+b~2)=2c~2 ∴ a+b≤2~(1/2)c 显然,当且仅当a=b时等号成立。(证毕) 当a,b,c均为正实数时,由a~2+b~2=c~2知a,b,c组成一个直角三角形的三边,故称(1)为勾股不等式。  相似文献   

3.
第三十六届国际奥林匹克数学竞赛第二题: 设a、b、c为正实数,且满足a·b·c=1,试证:1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥3/2(1)。(俄罗斯提供) 证法一 由已知条件a·b·c=1,(1)与下面(2),等价:b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥3/2(2),现用含参数基本不等式:a~2 (λb)~2≥2abλ(λ为参数)的变形:a~2/b≥2λa-λ~2b。因而  相似文献   

4.
定理1 欲证 P≥Q,只需证 P Q≥2Q.例1 (《数学通报》数学问题解答1602)已知 a,b,c∈R_ ,求证:((a b)/(a c))a~2 ((b c)/(b a))b~2 ((c a)/(c b))c~2≥a~2 b~2 c~2 .证明:不等式可化为P=a~3b~2 b~3c~2 c~3a~2≥a~2b~2c ab~2c~2 a~2bc~2≥Q.P Q=(a~3b~2 ab~2c~2) (b~3c~2 a~2bc~2) (c~3a~2  相似文献   

5.
丁兴春 《中学教研》2007,(10):26-27
下面题目出现在各类数学辅导资料上:题1 设 a>b>c>0,求证:a~2b b~2c c~2a>ab~2 bc~2 ca~2.最近笔者在解数学奥林匹克竞赛题时,遇到了与题目1相似的一道不等式题:题2 设 a>b>c>0,求证:a~3b~2 b~3c~2 c~3a~2>a~2b~3 b~2c~3 c~2a~3.比较上面2道不等式题,猜想是否具有一般性的结论呢?即:当 a≥b≥c>0,s,t ∈N*且 s≥t时,是否有:a~sb~t b~sc~t c~sa~t≥a~tb~s b~tc~s c~ta~s 成立呢?  相似文献   

6.
第36届IMO第2题,可推广得如下四个命题: 命题1 设a、b、c∈R~ ,且abc=1,则1/a~3(b c) 1/b~3(c a) 1/c~3(a b)≥1/2(bc ca ab)(1),当且仅当a=b=c=1时等式成立。 证 易知(2)等价于b~2c~2/a(b c) c~2a~2/b(c a) a~2b~2/c(a b)≥1/2(bc ca ab)(2)。由平均值不等式可得: b~2c~2 (1/4)a~2(b c)~2≥abc(b C), ∴b~2c~2≥abc(b c)-(1/4)a~2(b c)~2,  相似文献   

7.
蒋明斌 《中学教研》2006,(12):36-37
题1 求最小的实数m,使不等式 m(a^3+b^3+c^3)≥6(a^2+b^2+c^2)+1 (1) 对满足a+b+c=1的任意正实数a,b,c恒成立.  相似文献   

8.
代数部分 1.(俄罗斯)本届IMO第2题。 2.(瑞典)设a,b是非负整数,且满足ab≥c~2,其中c是整数。证明:存在数n,及整数x_1,x_2,…,x_n;y_1,y_2,…,y_n,使得 sum from i=1 to n(x_i~2)=a,sum from i=1 to n(y_i~2)=b,sum from i=1 to n(x_iy_i)=c。 证明 将上述问题简记为(a,b,c)。易知,命题对于(a,b,c)成立的充分必要条件是对于(a,b,-c)  相似文献   

9.
在《由基本不等式“a~2+b~2≥2ab”想到的》(见本刊1989年第4期)一文中给出了以下猜想(即原文的命题19): 命题1 设a,b,c为正数,则 (1) a~5+b~+c~5≥a~8bc+ab~8c+abc~8; (2) a~n+b~n+c~n≥a~pb~qc~r+a~qb~rc~p+a~rb~pc~q。其中n∈N,p,q,r为非负整数,且p+q+r=n。我们首先证明这一猜想是成立的。证明 (1)用两种方法证。证法1 由(a~3-b~3)(a~2-b~2)≥0得 a~5+b~5≥a~3b~2+a~2b~3同理 b~5+c~5≥b~3c~2+b~2c~3, c~5+a~5≥c~3a~2+c~2a~3。以上三个不等式相加,并注意到b~2+c~2≥2bc,c~2+a~2≥2ca,a~2+b~2≥2ab,有 2(a~5+b~5+c~5)≥a~3(b~2+c~2)+b~3(c~2+a~2)+c~3(a~2+b~2)≥2a~3bc+2b~3ca+2c~3ab,  相似文献   

10.
第十三届(1953牛)普特南数学竞赛有这样一道试题: 设实数a,b,c中任意两个之和大于第三个,求证 2/3(a+b+c)(a~2+b~2+c~2) >a~3+b~3+c~3+abc. (1) 事实上,我们有命题设实数a,b,c中任意两个之和大于第二个,则 2/3(a+b+c)(a~2+b~2+c~2) ≥a~3+b~3+c~3+3abc. (2)当且仅当a=b=c时等号成立. 证明:不难验证,(2)式等价于 (b+c-a)(c+a-b)(a+b-c)  相似文献   

11.
高中代数下册第10页在推证基本不等式a~3 b~3 c~3≥3abc时附带证明了一个不等式:已知a、b、c∈R,则 a~2 b~2 c~2≥ab bc ca (1)(当且仅当a=b=c时取等号)  相似文献   

12.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

13.
《数学通报》2005年8月号数学问题的1570给出如下不等式链:设 a,b,c∈R~ ,求证:a~5/b~3 b~5/c~3 c~5/a~3≥a~/b~2 b~4/c~2 c~4/a~2≥a~3/b b~3/c c~3/a≥a~2 b~2 c~2.(1)(注:这里我们略去了原问题中的最后一个常见的不等式.)本文通过对这个问题不同证法的探究,得到一个和式不等式,并利用这个和式不等式对问题1570进行再证和拓广.  相似文献   

14.
文[1]给出如下不等式猜想:若a,b,C是正实数,且满足abc=1,则a~2/2+a+b~2/2+b+c~2/2+c≥1.很多数学杂志给出了这个不等式的证明,下面笔者再给出一个简单的证明,证法1:由二元均值不等式得a~2/2+a+2+a/9≥2/3a(?)a~2/2+a≥5a/9-2/9,同理得到b~2/2+b≥5b/9-2/9;c~2/2+c  相似文献   

15.
代数部分1.本届IMO第1题.2.已知实数a、b、c、d满足a+b+c+d=6.a~2+b~2+c~2+d~2=12.证明:36≤4(a~3+b~3+c~3+d~3)-(a~4+b~4+c~4+d~4)≤48.3.已知x_1,x_2,…,x_(100)是非负实数,且对于  相似文献   

16.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

17.
由初等代数学,我们知道下面恒等式是成立的:(sum from n to i=1 a_i~2)(sum from n to i=1 b_i~2)-(sum from n to i=1 a_ib_i)=sum from to (i,f)(a_ib_f-a_fb_i)~Z……(1)此恒等式,通常称为拉格朗日(Lagrange)恒等式。由初等代数学也容易证明下面不等式是成立的:  相似文献   

18.
题目(第三届(2006年)东南数学奥林匹克第6题)求最小的实数m使得不等式 m(a^3+b^3+c^3)≥6(a^2+b^2+c^2)+1 (1) 对满足a+b+c=1的任意正实数a,b,c恒成立.  相似文献   

19.
初等数学中的有些问题,如果利用向量来解决,往往可以收到化繁为简,化难为易的效果.一、应用向量证明不等式例1 己知a,b,c∈R,且a b c=1,求证:a~2 b~2 c~2≥1/3证明:设(?)=(a,b,c),(?)=(b,c,a),(?)=(c,a,b)则(?) (?) (?)=(a b c,b c a,c a b)= (1,1,1),而|(?) (?) (?)|≤|(?)| |(?)| |(?)| ∴3~(1/2)≤ 3(a~2 b~2 c~2)~(1/2),即a~2 b~2 c~2≥1/3二、应用向量求三角函数值  相似文献   

20.
设a_1,a_2,…,a_n和b_1,b_2,…,b_n为两组实数,则有((sum from i=1 to n(a_ib_i))~2≤(sum from i=1 to n(a_i~2))(sum from i=1 to n(b_i~2)))。式中等号当且仅当a_1/b_1=a_2/b_2=…=a_n/b_n时成立。特别地,当b_1=b_2=…=b_n=1时,有 a_1~2 a_2~2 … a_n~2≥1/n(a_1 a_2 … a_n)~2。 以上第一个不等式称为柯西不等式,其证明方法很多,在此不再赘述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号