首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
平面向量     
基础篇诊断练习一、选择题1.下列说法正确的是 (   )( A)方向相同或相反的向量是平行向量 .( B)零向量的长度是 0 .( C)长度相等的向量叫相等向量 .( D)共线向量是在一条直线上的向量 .2 .已知非零向量 a,b满足关系式 :|a+b|=|a -b|,那么向量 a,b应满足的条件是 (   )( A)方向相同 .    ( B)方向相反 .( C)模相同 .     ( D)相互垂直 .3.给出下列命题 :( 1) k为实数 ,若 k . a =0 ,则 k =0或 a =0 .( 2 )若 a与 b共线 ,b与 c共线 ,则 a与 c共线 .( 3)若 a0 为单位向量 ,a与 a0 平行 ,则 a =|a|a0 .( 4) a≠ 0 ,若 na =mb( m …  相似文献   

2.
正确理解和运用平面向量的数量积有助 于利用向量这一强有力的数学利器。笔者以 下着重谈一谈学习平面向量的数量积时需要 注意的几个问题,提醒同学们在学习中加以 注意. 提示1.注意区别向量的数量积a·b与 实数乘法a·b 向量的数量积a·b与实数乘法a·b有 许多不同之处,而要正确区分它们,关键是以 公式a·b=|a|·|b|cosθ为依据…  相似文献   

3.
数量积是平面向量的一朵奇葩,它的运算有其独特性:a·b=|a||b|cosθ(0°≤θ≤180°)(定义式),或a·b=x1x2 y1y2(坐标式).它的结构有其多样性:向量与数量,模与夹角以及坐标表示等;它的应用有其广泛性;可以处理有关长度、角度和垂直等许多问题.因此,平面向量的数量积倍受命题者的关注和青睐,从而生成了多背景、多层次、多辐射的高考模型.一、求数量积利用数量积公式求数量积时,若已知模和夹角,则用定义式;若已知坐标表示,则用坐标式,同时配用数形结合的思想.【例1】已知平面上三点A、B、C满足|AB|=3,|BC|=4,|CA|=5.则AB·BC …  相似文献   

4.
向量共线的充要条件是由实数与向量的积推出的,它是平面向量的基本定理的一种特殊情况,具体内容为:向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa, 由于零向量与任一向量共线,故上述定理又可叙述为向量b与向量a共线的充要条件是:存在不全为0的实数λ1, λ2, 使得λ1a+λ2b=0, 它的逆否命题为:若向量a, b不共线,(a≠0, b≠0),且λ1a+λ2b=0, 则λ1=λ2=0,这些结论可用来证明几何中三点共线与两直线平行等问题.举例说明如下:  相似文献   

5.
平面向量具有较强的工具性作用,向量方法不仅可以用来解决不等式、三角、复数、物理、测量等某些问题,还可以简洁明快地解决平面几何许多常见证明(平行、垂直、共线、相切、角相等)与求值(距离、角、比值等)问题.用向量法解决平面几何问题的一般途径是:问题条件翻译向量关系式向量运算其它向量关系式翻译问题结论向量法应用于平面几何中时,它是数学中的数与形完美结合,能使平面几何许多问题代数化,程序化,从而得到更有效的解决.1 利用两个非零向量a、b共线的充要条件a=λb(其中λ是实数),解决与“平行或共线”有关的问题.  例1 如图1,一…  相似文献   

6.
人民教育出版社出版的全日制普通高级中学教科书(必修)(即实验教材或叫新教材)关于两个向量平行(也称共线)给出了两个充要条件.本文针对这两个充要条件的教学谈点看法.1关于在实数与向量的积的意义下的充要条件在定义了实数与向量的积的意义后,课本给出了两个向量共线的充要条件,即以下定理1.定理1向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa在教学实践中,笔者发现:这个定理的关键词,即非零向量a,是解题出错之所在.事实上,如果缺少了这个条件,那么当向量a=0时,与向量a共线的非零向量b不可能满足b=λa.即定理1成为定理2向…  相似文献   

7.
平面向量的数量积公式是 a·b=|a||b|cos〈a,b〉, 其中含有向量的模,两个向量的夹角,因此,通过向量数量积运算,能将具有方向与大小二重运算的向量转化为实数运算,在求角的大小,向量的系数大小或范围,以及在解三角形中都可应用.  相似文献   

8.
高等数学初等化问题,已成为高考数学试题发展的新趋势,它给师生带来了新的思维挑战.本文就这方面问题作如下归纳:计算条件初等化例1:若两个向量a!,b"的夹角为θ,则称向量“a!×b"”为“向量积”,其长度|a!×b"|=|a!|·|b"|·sinθ.今已知|a!|=1,|b"|=5,|a!×b"|=|a!|·|b"|·sinθ=3,则a!·b"=_____.解:由“向量积”的定义可知|a!×b"|=|a!|·|b|·sinθ=3,带入条件有sinθ=53,且θ∈[0,π],所以cosθ=±54.所以a!·b"=|a!|·|b"|·cosθ=±4.例2:若定义运算ca bd=ad-bc,则符合条件1-1Z Zi=4+2i的复数Z为().A.3…  相似文献   

9.
胡彬 《高中生》2009,(10):18-19
一、考查平面向量的数量积与向量的模长的相互转换 例1(全国卷二)已知向量a=(2,1),a·b=10,|a+b|=5√2,则|b|=  相似文献   

10.
5.“算两次”列方程算两次的方法在数学解题中屡试不爽,同一个式子、同一个图形、同一个问题从两个不同的角度出发,得到不同的式子、方程,从而为解决问题提供了方便.在平面向量中“算两次”的方法运用的最为普遍的是三点共线问题.【例7】△A BC中,|A M|∶|AB|=1∶3,|A N|∶|AC|=1∶4.线段BN与C M交于点E,A=a粌,A=b粓,试用a粌与粓b表示A.【分析】用两种方式来刻划M,E,C三点共线,并注意利用平面向量基本定理.【解】∵M,E,C三点共线,且A=13A.设M=tM由平面向量定理知,A=tA+(1-t)A=tA+1-t3A,又设N=sN,∵A=41A,∴由平面向…  相似文献   

11.
一、考查平面向量的基本概念和运算律例1设a、b、c是任意的非零平面向量,且互不共线,给出下列四个命题:①(a·b)c-(c·a)b=0;②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中真命题有()A.①②B.②③C.③④D.②④解析①∵a、b、c互不共线,∴(a·b)c与(c·a)b分别与c、b共线,而c与b不共线,∴(a·b)c≠(c·a)b,故(a·b)c-(c·a)b=0不成立.②∵a、b、c互不共线,∴a、b、a-b可以构成三角形,∴|a|-|b|<|a-b|.③∵犤(b·c)a-(c·a)b犦·c=(b·c)a·c-(c·a)b·c=(b·c)(a·c)-(c·a)(b·c)=0,…  相似文献   

12.
向量共线的充要条件是由实数与向量的积推出的,它是平面向量的基本定理的一种特殊情况,具体内容为:向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa,由于零向量与任一向量共线,故上述定理又可叙述为向量b与向量a共线的充要条件是:存在不全为0的实数λ_(1),λ_(2),使得  相似文献   

13.
一、选择题1.下列关系正确的是()A.A =-B B.a·b仍是一个向量C.A -A =C D.|a·b|=|a|·|b|2.若向量a、b反向,则下列等式成立的是()A.|a|-|b|=|a-b|B.|a+b|=|a-b|C.|a|+|b|=|a-b|D.|a|+|b|=|a+b|3.平面上有三个点C(2,2),M(1,3),N(7,k),若∠MCN=90°,则k的值为()A.6B.7C.8D.94.下列各组中的两个向量,其中共线的一组是()A.a=(-2,3),b=(4,6)B.a=(2,3),b=(3,2)C.a=(1,-2),b=(7,14)D.a=(-3,2),b=(6,-4)5.若|a|=3,|b|=4,(a+b)(a+3b)=33,则a与b的夹角为()A.30°B.60°C.120°D.150°6.…  相似文献   

14.
根据绝对值的定义,当a为有理数时,|a|=a(a>0),0(a=0),-a(a<0).!####"####$下面举例说明利用这一概念化简含有绝对值符号的式子与求值问题.例1三个数a、b、c在数轴上的位置如图所示,化简|b|-|c|+|a+b|+|a-c|.解:由图可知a>0,b<0,c<0,a+b<0,a-c>0.故|b|=-b,|c|=-c,|a+b|=-(a+b)=-a-b,|a-c|=a-c.原式=-b-(-c)-a-b+a-c=-2b.评析:根据绝对值和数轴的直观性,分别找出绝对值里面有关量的变化情况,然后再回到非负数的性质与定义上.例2使|a+2|=|a|+2成立的条件是().(A)a为任意实数(B)a≠0(C)a≤0(D)a≥0解:按|a|≥0的性质,…  相似文献   

15.
平面向量     
☆基础篇诊断检测一、选择题1.下列说法正确的是()(A)平行向量就是与向量所在直线平行的向量.(B)长度相等的向量叫相等向量.(C)零向量的长为0.(D)共线向量是在一条直线上的向量.2.已知向量a与b反向,下列等式成立的是()(A)|a|-|b|=|a-b|.(B)|a+b|=|a-b|.(C)|a|+|b|=|a-b|.(D)|a|+|b|=|a+b|.3.给出下列命题:(1)如果λa=λb(λ≠0),那么a=b.(2)若a0为单位向量,a与a0平行,则a=|a|a0.(3)设a=λ1e1+λ2e2(λ1,λ2∈R),则当e1与e2共线时,a与e1也共线.其中真命题的个数是()(A)0.(B)1.(C)2.(D)3.4.将函数y=x2+4x+5的图象按向量a经过一次平移后,…  相似文献   

16.
《中学数学月刊》2003,(2):47-49
1.下列命题是真命题的是 (   )1 a∥b 存在唯一的实数 λ,使 a=λb;2 a∥b 存在不全为零的实数 λ,μ,使 λa+μb=0 ;3a与 b不共线 若存在实数 λ,μ,使 λa+ μb=0 ,则 λ=μ=04 a与 b不共线 不存在实数λ,μ,使λa+ μb=0( A) 1和 4  ( B) 2和 3  ( C) 1和 2 ( D) 3和 42 .设 a,b为非零向量 ,则下列命题中 ,1 | a+ b| =| a- b| a与 b有相等的模2 | a+ b| =| a| + | b| a与 b的方向相同3| a| + | b|≤ | a- b| a与 b的夹角为钝角4 | a+ b| =| a| - | b| | a|≥ | b|且 a与 b方向相反真命题的个数是 (  )( A) 0  ( B) 1  (…  相似文献   

17.
在公式(a+b)^2=a^2+b^2+2a·b=|a|^2+|b|^2+2|a|·|b|cosθ(其中θ为向量a,b的夹角)中,既有向量的加法运算,又含有向量的内积;既有向量的模,又隐含向量的夹角在内.应用该公式解决已知几个向量的和,求向量的内积、夹角或模的问题时,会带来方便.  相似文献   

18.
向量及其运算是高中教材的新增内容 ,它融数、形于一体 ,具有代数形式和几何形式的“双重身份” ,使它成为中学数学知识的一个交汇点 ,成为联系多项内容的媒介 .下面举例说明向量与三角函数、解析几何、立体几何的交汇 .一、向量与三角函数的交汇例 1 已知 ,a=cos32 x ,sin32 x ,b=cos x2 ,-sin x2 且x∈ 0 ,π2 .( 1)求a·b及 |a +b| ;( 2 )求函数 f(x) =a·b -4 |a +b|的最小值 .解  ( 1)按向量运算的意义 ,有a·b=cos32 xcosx2 +sin 32 x · -sin x2=cos 32 x +x2=cos 2x .a+b =cos32 x+cos x2 ,sin32 x-sin x2 ,|a +b| =cos32 …  相似文献   

19.
我们已经知道:向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.由此我们可以得到从一个始端出发的三个向量的终端共线的充要条件(我们简称三点共线向量的推论式)即推论:向量a,b,c有公共起点,则三个向量终点在同一条直线上的充要条件是存在实数λ,μ,使得c=λa μb.且λ μ=1.  相似文献   

20.
新版高一数学 (下册 )第五章第三节《实数与向量的积》中 ,介绍了平面两个向量共线定理 :向量 b与非零向量 a共线的充要条件是有且只有一个实数λ,使得b =λa.由此 ,可以得到下列推论 :推论 1   OA、OB是平面内两不共线向量 ,向量OP满足 :OP =a OA +b OB( a,b∈ R) ,则 A、P、B三点共线的充要条件是 a +b =1.证明 :( 1)若 a +b=1,则 A P =OP - OA =( a -1) OA +b OB =b( OB - OA ) =b AB,故 AP与 A B共线 ,从而 A、P、B三点共线 ;( 2 )若 A、P、B三点共线 ,则存在唯一实数λ,使得AP =λAB,即 OP - OA =λ( OB - OA …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号