首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于三角函数中的周期性内容的学习与把握,笔者认为应从如下四个方面进行。  相似文献   

2.
在中学里讲到三角函数时,总是这样说,sin x,cos x的最小正周期为2π,tan x,cot x的最小正周期为π.平时做题目时,遇到有关周期函数的问题,总是这样假定,假设其最小正周期为l,然后在此基础上展开讨论、论证,这似乎已经习以为常了.然而并不是所有周期函数都有最小正周期,在这方面一个比较熟悉的例子是狄里克雷函数:[第一段]  相似文献   

3.
现行高中教材指出:2kπ(k∈Z,k≠0)是正弦函数 f(x)=sinx 的周期,其最小正周期为2π,且略去证明.事实上,求正弦函数的最小正周期并非难事,本文介绍一个求三角函数最小正周期的简单有效的方法:先在函数的定义域中找出一个适当的 x_0通过方程 f(T x_0)=f(x_0)解出 T;然后对 T 的每一个正值(由小到大)验证f(T x)=f(x)是否对定义域中的任意 x 的值都成立,即分别检验 T 是否为其周期.显然第一个是周期的 T 的值就是所给函数的最小正周期.下面举例说明:  相似文献   

4.
周期性是三角函数最重要的性质之一,我们知道三种基本函数y=Asin(ωx+φ)+b、y=Acos(ωx+φ)+b、y=Atan(ωx+φ)+b(A≠0,ω)&;gt;0,φ,b为常数)中系数A,φ,b对于三角函数的周期没有根本的影响,因而考虑y=sinωx、y=tanωx两种最基本函数的周期即可。利用周期的定义,结合三角函数图象,设法化为最基本三角函数的周期,是求(或证明)三角函数周期最基本的方法。  相似文献   

5.
两函数f1(x),f2(x)的最小正周期分别为T1,T2,当(T1)/(T2)为有理数时,和函数f(x)=f1(x) f2(x)的最小正周期是什么?  相似文献   

6.
我们熟悉了g(x)=Asin(ωx ψ) B的最小正周期T=(2π/|ω|),那么| g(x)|的最小正周期呢?  相似文献   

7.
在三角学的教学过程中,常常遇到周期性的问题,例如在文献[1]中,P.50第94题,要求sin2x cos3x的最小正周期.在[1]中有以下解法: 先求得sin2x的最小正周期π,并求得cos3x的最小正周期2π/3,再取两个数的最小公倍数2π=π×2=2π/3×3,它就是sin2x cos3x的最小正周期. 容易看到,这个最小公倍数确实是sin2x与cos3x这两个函数的周期,但是未必能保证一定是sin2x cos3x的“最小”的正周期.也就是说,我们缺少关于“最小性”的证明.本文将给出这方面的严格证明,并讨论了更一般的情形,比如,两个连续的周期函数,它们的和的最小正周期,是否能够通过最小公倍数方法求得?  相似文献   

8.
给出一类三角多项式函数为周期函数的差别定理,并导出此类函数周期的求法。  相似文献   

9.
本给出了非常值周期函数存在最小正周期的一个充分条件,非常值周期函数若在某一点存在右极限(或左极限),则必有最小正周期。  相似文献   

10.
关于周期函数及最小正周期的探讨   总被引:1,自引:0,他引:1  
对周期函数及最小正周期的性质进行了一些探讨,同时也给出了说明结果重要性的一些例子。  相似文献   

11.
本文从周期函数的定义、函数周期性的判断与证明、三角函数最小正周期的求法这三个方面对周期函数的内涵与外延作进一步探讨。  相似文献   

12.
13.
题1已知圆C:x~2 y~2=4和两个定点A(-1,0)、B(1,0),P为圆C上的动点,过点P的圆C的切线为l,点A关于l的对称点A′.求A′B的最大值.分析本题参考答案的解题思路是:首先求出点A′的轨迹方程,再利用两点间距离公式去求A′B的表达式(要运用点A′的轨迹方程将二元函数最值问题转化为一元  相似文献   

14.
历年高考试题中,求三角函数的最小正周期是热点题目。本介绍几种常见的求函数最小正周期的方法。  相似文献   

15.
三角函数图像与性质一节中有很多试题,题目本身没有明显提出函数周期问题,学生不易联想到周期,思路往往受阻,实感困惑,而此类问题一般都可利用三角函数的周期来解决,请关注《如何利用三角函数周期解题》一文的具体探讨.  相似文献   

16.
求三角函数的最小正周期是高考的重点内容之一,也是高中教学的难点之一,如何教会学生求三角函数的最小正周期呢?这是本文要探讨的问题.笔者根据自己执教的体会,总结六种不同类型的求法.1图像法当所给三角函数的图像比较容易作出时,可利用函数图像直观地去求该三角?..  相似文献   

17.
本文对如何判定一个给定函数是否是周期函数,若是周期函数,是否存在最小正周期,若存在,又如何求其最小正周期等问题,进行了系统地讨论,给出了一些具体的方法。  相似文献   

18.
本文以2006年广东省“3+证书”考试复习丛书——《数学复习指导》里第128页的41题为例,来探讨三角函数中绝对值情况求最值和周期问题的一般技巧,就是抓住基础知识、将难点分解、知识点模块化。  相似文献   

19.
对文 [1]“关于周期函数的最小正周期的存在性”中定理的条件作了一些修正 ,从而得到并证明了更强的命题  相似文献   

20.
数学的一种妙解,宛如一弯绚丽的彩虹,折射出智者的光辉、数学的魅力.然而,要获得问题的巧解,除了要用敏锐的观察与慎密的思维去面对外,还需要熟悉一些解题的策略.本文以三角函数图象与性质问题为例来分析解题的一些基本策略.1善于转化——具有魅力的解题思想求解三角函数图象与性质问题时,一般是把形  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号