首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In tennis, a high ball velocity and a fast run toward the net are key features to successful performance of "serve-and-volley" players. For the serve, tennis players can use two techniques: the foot-up (FU) or foot-back (FB) technique. The aim of this study was to determine if the running time toward the net after the serve and the ball velocity (V(ball)) vary between these two techniques. Moreover we analysed the angular momentum values of the trunk and of the arm holding the racquet. Fifteen expert tennis players performed six successful serve-and-volleys with both techniques. Running time to the net is significantly lower for FB, whereas V(ball) is significantly higher for FU. Trunk and arm angular momentums about the transverse axis are significantly higher with FU before ball impact. A significant correlation (r = 0.81, P < 0.001) exists between changes in the maximal trunk angular momentum and in running time to the net between the two serve techniques. A significant correlation (r = 0.84, P < 0.001) also exists between changes in the maximal trunk angular momentum and in V(ball) between the two serve techniques. According to these results, FB is the best technique for moving as quickly as possible to the net because of a lower trunk angular momentum.  相似文献   

2.
3.
The study investigated differences in the one- (SH) and two-handed (DH) backhands when hit flat, across-court (AC) and down-the-line (DL), and with heavy topspin DL (TDL). The ability to disguise each of these backhands when hitting the above strokes was also assessed. Eighteen college-level male tennis players, identified as having a high performance topspin SH (n = 6) or DH (n = 12) backhand drive, participated in the study. Players were required to hit three AC, DL and TDL backhands from the baseline with their preferred technique, while being filmed with two high-speed video cameras operating at 200 Hz. The highest horizontal velocity backhand for each stroke was analysed. Results indicated that the sequential coordination of five body segments (hips, shoulder, upper arm, forearm, and hand/racquet rotations) was required for the execution of the SH stroke. The same number of segments were generally coordinated in the DH stroke (hips, shoulders, and varying degrees of upper arm and forearm rotations followed by hand/racquet movement). Mature players produced comparable racquet horizontal velocities 0.005 s prior to impact using either the SH or DH backhand technique. The SH backhand was characterised by a more rotated shoulder alignment than the DH stroke (SH: 119.1 degrees; DH: 83.4 degrees) at the completion of the backswing. At impact the ball was impacted further in front (SH: 0.59 m: DH: 0.40 m) and a similar distance to the side of the body (SH: 0.75 m: DH: 0.70 m). Players using the DH backhand technique delayed the horizontal acceleration of the racquet towards the ball (SH: 0.13 s: DH: 0.08 s prior to impact) and thus were capable of displaying a similar hitting motion closer to impact than players with a SH technique.  相似文献   

4.
Tennis     
The study investigated differences in the one‐ (SH) and two‐handed (DH) backhands when hit flat, across‐court (AC) and down‐the‐line (DL), and with heavy topspin DL (TDL). The ability to disguise each of these backhands when hitting the above strokes was also assessed. Eighteen college‐level male tennis players, identified as having a high performance topspin SH (n = 6) or DH (n = 12) backhand drive, participated in the study. Players were required to hit three AC, DL and TDL backhands from the baseline with their preferred technique, while being filmed with two high‐speed video cameras operating at 200 Hz. The highest horizontal velocity backhand for each stroke was analysed. Results indicated that the sequential coordination of five body segments (hips, shoulder, upper arm, forearm, and hand/racquet rotations) was required for the execution of the SH stroke. The same number of segments were generally coordinated in the DH stroke (hips, shoulders, and varying degrees of upper arm and forearm rotations followed by hand/racquet movement). Mature players produced comparable racquet horizontal velocities 0.005 s prior to impact using either the SH or DH backhand technique. The SH backhand was characterised by a more rotated shoulder alignment than the DH stroke (SH: 119.1°; DH: 83.4°) at the completion of the backswing. At impact the ball was impacted further in front (SH: 0.59 m; DH: 0.40 m) and a similar distance to the side of the body (SH: 0.75 m; DH: 0.70 m). Players using the DH backhand technique delayed the horizontal acceleration of the racquet towards the ball (SH: 0.13 s; DH: 0.08 s prior to impact) and thus were capable of displaying a similar hitting motion closer to impact than players with a SH technique.  相似文献   

5.
Attaining high speed of the stick head and consequently of the ball is essential for successful performance of the drag flick in field hockey, but the coordination pattern used to maximise stick head speed is unknown. The kinematics of the drag flick was studied in ten elite hockey players who performed twenty shots each towards a target located 1.5 m high. A 150 Hz active marker motion analysis system was used, alongside two force plates to detect foot touchdown. Angular velocity and contribution to stick endpoint speed of upper body joints were analysed. Repeated measures ANOVA was used to compare timing of onset and peak angular velocities between joints. Participants used a kinematic pattern that was close to a proximal-to-distal sequence. Trunk axial rotation and lateral rotation towards the target, right wrist flexion and left wrist extension were the main contributors to stick endpoint speed. Coaches should emphasise trunk rotations and wrist flexion and extension movements for maximising stick head speed. Given the high level of the participants in this study, the coordination of joints motions, as reported here, can serve as a guideline for drag flick training.  相似文献   

6.
Enhancing the understanding of coordination and variability in the tennis serve may be of interest to coaches as they work with players to improve performance. The current study examined coordinated joint rotations and variability in the lower limbs, trunk, serving arm and ball location in the elite female tennis serve. Pre-pubescent, pubescent and adult players performed maximal effort flat serves while a 22-camera 500 Hz motion analysis system captured three-dimensional body kinematics. Coordinated joint rotations in the lower limbs and trunk appeared most consistent at the time players left the ground, suggesting that they coordinate the proximal elements of the kinematic chain to ensure that they leave the ground at a consistent time, in a consistent posture. Variability in the two degrees of freedom at the elbow became significantly greater closer to impact in adults, possibly illustrating the mechanical adjustments (compensation) these players employed to manage the changing impact location from serve to serve. Despite the variable ball toss, the temporal composition of the serve was highly consistent and supports previous assertions that players use the location of the ball to regulate their movement. Future work should consider these associations in other populations, while coaches may use the current findings to improve female serve performance.  相似文献   

7.
We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

8.
The purpose of this study was to determine whether joint velocities and segmental angular velocities are significantly correlated with ball velocity during an instep soccer kick. We developed a deterministic model that related ball velocity to kicking leg and pelvis motion from the initiation of downswing until impact. Three-dimensional videography was used to collect data from 16 experienced male soccer players (age = 24.8 ± 5.5 years; height = 1.80 ± 0.07 m; mass = 76.73 ± 8.31 kg) while kicking a stationary soccer ball into a goal 12 m away with their right foot with maximal effort. We found that impact velocities of the foot center of mass (CM), the impact velocity of the foot CM relative to the knee, peak velocity of the knee relative to the hip, and the peak angular thigh velocity were significantly correlated with ball velocity. These data suggest that linear and angular velocities at and prior to impact are critical to developing high ball velocity. Since events prior to impact are critical for kick success, coordination and summation of speeds throughout the kicking motion are important factors. Segmental coordination that occurs during a maximal effort kick is critical for completing a successful kick.  相似文献   

9.
Abstract

We examined mechanisms of coordination that enable skilled recreational baseball players to make fast overarm throws with their skilled arm and which are absent or rudimentary in their unskilled arm. Arm segment angular kinematics in three dimensions at 1000 Hz were recorded with the search-coil technique from the arms of eight individuals who on one occasion threw with their skilled right arm and on another with their unskilled left arm. Compared with their unskilled arm, the skilled arm had: a larger angular deceleration of the upper arm in space in the forward horizontal direction; a larger shoulder internal rotation velocity at ball release (unskilled arms had a negative velocity); a period of elbow extension deceleration before ball release; and an increase in wrist velocity with an increase in ball speed. It is suggested that some of these differences in arm kinematics occur because of differences between the skilled and unskilled arms in their ability to control interaction torques (the passive torque at one joint due to motion at adjacent joints). It is proposed that one reason unskilled individuals cannot throw fast is that, unlike their skilled counterparts, they have not developed the coordination mechanisms to effectively exploit interaction torques.  相似文献   

10.
The purpose of this study was to assess the contributions of racket arm joint rotations to the racket tip velocity at ball impact in table tennis topspin backhands against topspin and backspin using the method of Sprigings et al. (1994). Two cine cameras were used to determine three-dimensional motions of the racket arm and racket, and the contributions of the rotations for 11 male advanced table tennis players. The racket upward velocity at impact was significantly higher in the backhand against backspin than against topspin, while the forward velocity was not significantly different between the two types of backhands. The negative contribution of elbow extension to the upward velocity was significantly less against backspin than against topspin. The contribution of wrist dorsiflexion to the upward velocity was significantly greater against backspin than against topspin. The magnitudes of the angular velocities of elbow extension and wrist dorsiflexion at impact were both similar between the two types of backhands. Our results suggest that the differences in contributions of elbow extension and wrist dorsiflexion to the upward velocity were associated with the difference in upper limb configuration rather than in magnitudes of their angular velocities.  相似文献   

11.
The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.  相似文献   

12.
This study sought to identify kinematic differences in finger-spin bowling actions required to generate variations in ball speed and spin between different playing groups. A 12-camera Vicon system recorded the off-spin bowling actions of six elite and 13 high-performance spin bowlers, and the “doosra” actions of four elite and two high-performance players. Forearm abduction and fixed elbow flexion in the bowling arm were higher for the elite players compared with the high-performance players. The elite bowlers when compared with the high-performance players delivered the off-break at a statistically significant higher velocity (75.1 and 67.1 km/hr respectively) and with a higher level of spin (26.7 and 22.2 rev/s respectively). Large effect sizes were seen between ball rotation, pelvic and shoulder alignment rotations in the transverse plane. Elbow extension was larger for elite bowlers over the period upper arm horizontal to ball release. Compared to the off-break, larger ranges of shoulder horizontal rotation, elbow and wrist extension were evident for the “doosra”. Furthermore, the “doosra” was bowled with a significantly longer stride length and lower ball release height. Although not significantly different, moderate to high effect size differences were recorded for pelvis rotation, elbow extension and elbow rotation ranges of motion.  相似文献   

13.
The three-dimensional kinematics of international female footballers performing a simulated direct free kick (curve kick) were compared with those of an instep kick. Reflective markers attached to the participants were tracked by 17 Vicon cameras sampling at 250 Hz. Foot velocity at ball impact did not differ between the two types of kick, but the way in which foot velocity was generated did differ, with instep kicks using a faster approach velocity and greater linear velocities of the hip and knee, and curve kicks using a greater knee angular velocity at impact. In both types of kick, peak knee angular velocity and peak ankle linear velocity occurred at ball impact, providing biomechanical support to the common coaching recommendation of kicking through the ball. To achieve a curved ball trajectory, players should take a wide approach angle, point the support foot to the right of the intended target (for right-footed players), swing the kicking limb across the face of the goal, and impact the ball with the foot moving upwards and in an abducted position. This information will be useful to coaches and players in identifying the fundamental coaching points necessary to achieve a curved trajectory of the ball compared with the more commonly described instep kick kinematics.  相似文献   

14.
The purpose of this study was to determine the significance of mechanical energy generation and transfer in the upper limb in generating the racket speed during table tennis topspin forehands. Nine advanced and eight intermediate table tennis players performed the forehand stroke at maximum effort against light and heavy backspin balls. Five high-speed video cameras operating at 200 fps were used to record the motions of the upper body of the players. The joint forces and torques of the racket arm were determined with inverse dynamics, and the amount of mechanical energy generated and transferred in the arm was determined. The shoulder internal rotation torque exerted by advanced players was significantly larger than that exerted by the intermediate players. Owing to a larger shoulder internal rotation torque, the advanced players transferred mechanical energy from the trunk of the body to the upper arm at a higher rate than the intermediate players could. Regression of the racket speed at ball impact on the energy transfer to the upper arm suggests that increase in the energy transfer may be an important factor for enabling intermediate players to generate a higher racket speed at impact in topspin forehands.  相似文献   

15.
ABSTRACT

To maintain the accuracy of squash shots under varying conditions, such as the oncoming ball’s velocity and trajectory, players must adjust their technique. Although differences in technique between skilled and less-skilled players have been studied, it is not yet understood how players vary their technique in a functional manner to maintain accuracy under varying conditions. This study compared 3-dimensional joint and racket kinematics and their variability between accurate and inaccurate squash forehand drives of 9 highly skilled and 9 less-skilled male athletes. During inaccurate shots, less-skilled players hit the ball with a more open racket, demonstrating a difference in this task-relevant parameter. No joint kinematic differences were found for accuracy for either group. Coordinated joint rotations at the elbow and wrist both displayed a “zeroing-in” effect, whereby movement variability was reduced from the initiation of propulsive joint rotation to a higher consistency at ball-impact; potentially highlighting the “functionality” of the variability prior to the impact that enabled consistent task-relevant parameters (racket orientation and velocity) under varying conditions. Further, highly skilled players demonstrated greater consistency of task-relevant parameters at impact than less-skilled players. These findings highlight the superior ability of highly skilled players to adjust their technique to achieve consistent task-relevant parameters and a successful shot.  相似文献   

16.
The purpose of this study was to quantify ranges and speeds of movement, from shoulder external rotation to ball impact, in the tennis service actions of world class players. Two electronically synchronised 200 Hz video cameras were used to record 20 tennis players during singles competition at the Sydney 2000 Olympic games. Three-dimensional motion of 20 landmarks on each player and racquet were manually digitized. Based upon the mean values for this group, the elbow flexed to 104 degrees and the upper arm rotated into 172 degrees of shoulder external rotation as the front knee extended. From this cocked position, there was a rapid sequence of segment rotations. The order of maximum angular velocities was trunk tilt (280 degrees/s), upper torso rotation (870 degrees/s), pelvis rotation (440 degrees/s), elbow extension (1510 degrees/s), wrist flexion (1950 degrees/s), and shoulder internal rotation. Shoulder internal rotation was greater for males (2420 degrees/s) than females (1370 degrees/s), which may be related to the faster ball velocity produced by the males (50.8 m/s) than the females (41.5 m/s). Although both genders produced segment rotations in the same order, maximum upper torso velocity occurred earlier for females (0.075 s before impact) than for males (0.058 s). At impact, the trunk was tilted 48 degrees above horizontal, the arm was abducted 101 degrees and the elbow, wrist, and lead knee were slightly flexed. Male and female players should be trained to develop the kinematics measured in this study in order to produce effective high-velocity serves.  相似文献   

17.
Soccer kicking training should be adjusted to the characteristics of the athletes. Therefore, examination of differences in kicking kinematics of females and pubertal players relative to males is worthwhile. The purpose of the study was to compare kicking kinematics and segmental sequence parameters between male, female, and pubertal players. Ten adult male, ten adult female, and ten male pubertal players participated in the study. Participants performed five consecutive kicking trials of a stationary ball, as powerful as they could. Analysis of variance showed significantly higher ball velocity, higher joint linear velocities for the knee and the hip, and higher angular velocities of the knee and the ankle for males compared to female and pubertal players (p < 0.05). Similarly, the peak joint velocity was achieved significantly closer to ball impact in males compared to other groups (p < 0.05). Males also showed a more plantarflexed ankle immediately before ball impact (p < 0.05). Females and pubertal players may benefit from skill training aiming to increase ankle plantarflexion and hip flexion prior to ball impact, and to adjust thigh and shank motion, such that the shank–foot segment travels through a higher range of motion and with a greater velocity.  相似文献   

18.
There are several ways of carrying the ball in rugby union, which could influence the speed at which a player can run. We assessed 52 rugby players (34 males, 18 females) during a maximum sprint over 30 m without the ball, with the ball under one arm, and with the ball in both hands. Timing gates were used to measure time over the initial 10 m and the last 20 m. It has previously been reported (Grant et al., 2003) that running with the ball produces a slower sprinting speed than running without the ball. We hypothesized that the decrease in speed caused by carrying the ball would become less marked with the experience of the player. The male and female players were each divided into two groups: a "beginner" group that consisted of players in their first or second season and an "experienced" group that was composed of players who had played for more than two seasons. A 2 x 3 mixed-model analysis of variance was used to identify differences (P < 0.01) between the beginner and experienced groups in the three sprinting conditions. The times for the males for the first 10 m sprints without the ball, with the ball under one arm, and with the ball in both hands were 1.87 +/- 0.08 s, 1.87 +/- 0.08 s, and 1.91 +/- 0.1 s for the beginners, and 1.87 +/- 0.1, 1.88 +/- 0.1 and 1.88 +/- 0.12 for the more experienced players respectively. The times for the females for the first 10 m without the ball, with the ball under one arm, and with the ball in both hands were 2.13 +/- 0.16 s, 2.19 +/- 0.17 s, and 2.20 +/- 0.16 s for the beginners, and 2.03 +/- 0.12 s, 2.03 +/- 0.09 s, and 2.04 +/- 0.1 s for the more experienced players respectively. For the last 20 m of the 30-m sprint, there were differences between the different sprint conditions (P < 0.001) but no differences that were attributable to experience (P = 0.297). The times for the males over the last 20 m without the ball, with the ball under one arm, and with the ball in both hands were 2.58 +/- 0.19 s, 2.61 +/- 0.12 s, and 2.65 +/- 0.12 s for the beginners, and 2.59 +/- 0.12, 2.62 +/- 0.23, and 2.65 +/- 0.18 s for the more experienced players respectively. The times for the females over the last 20 m without the ball, with the ball under one arm, and with the ball in both hands were 3.25 +/- 0.38 s, 3.35 +/- 0.42 s, and 3.40 +/- 0.46 s for the beginners, and 3.04 +/- 0.32 s, 3.06 +/- 0.22 s, and 3.13 +/- 0.27 s for the more experienced players respectively. No gender-specific differences were detected. The results of this study suggest that practising sprints while carrying a ball benefits the early phase of sprinting while carrying the ball.  相似文献   

19.
Different methods of ball carrying can be used when a player runs with the ball in rugby union. We examined how three methods of ball carrying influenced sprinting speed: using both hands, under the left arm and under the right arm. These methods were compared with running without the ball. Our aim was to determine which method of ball carrying optimizes sprinting speed. Altogether, 48 rugby union players (age 21 +/- 2 years, height 1.83 +/- 0.1 m, body mass 85.3 +/- 12 kg, body fat 14 +/- 5%; mean +/- s) were recruited. The players performed twelve 30-m sprints in total (each player performed three trials under each of three methods of carrying the ball and sprinting without the ball). The design of the study was a form of Latin rectangle, balanced across the trial order for each of the methods and for pairwise combinations of the methods in blocks of four per trial. Each sprint consisted of a 10-m rolling start, followed by a 20-m timed section using electronic timing gates. Compared with sprinting 20 m without the ball (2.58 +/- 0.16 s), using both hands (2.62 +/- 0.16 s) led to a significantly slower time (P < 0.05). Sprinting 20 m with the ball under the left arm (2.61 +/- 0.15 s) or under the right arm (2.60 +/- 0.17 s) was significantly quicker than when using 'both hands' (P < 0.05), and both these methods were significantly slower than when running without the ball (P < 0.05). Accordingly, running with the ball in both hands led to the greatest decrement in sprinting performance, although carrying the ball under one arm also reduced the players' sprinting ability. Our results indicate that to gain a speed advantage players should carry the ball under one arm.  相似文献   

20.
This study compared the whole-body movement coordination of pitching among 72 baseball players of various ages and velocity levels. Participants were classified as senior, junior, and little according to their age, with each group comprising 24 players. The velocity levels of the high-velocity (the top eight) and low-velocity (the lowest eight) groups were classified according to their pitching velocity. During pitching, the coordinates of 15 markers attached to the major joints of the whole-body movement system were collected for analysis. Sixteen kinematic parameters were calculated to compare the groups and velocity levels. Principal component analysis (PCA) was conducted to quantify the coordination pattern of pitching movement. The results were as follows: (1) five position and two velocity parameters significantly differed among the age groups, and two position and one velocity parameters significantly differed between the high- and low-velocity groups. (2) The coordination patterns of pitching movement could be described using three components, of which the eigenvalues and contents varied according to age and velocity level. In conclusion, the senior and junior players showed greater elbow angular velocity, whereas the little players exhibited a wider shoulder angle only at the beginning of pitching. The players with high velocity exhibited higher trunk and shoulder rotation velocity. The variations among groups found using PCA and kinematics parameter analyses were consistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号