首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
解答某些与二次根式有关的求值问题时,利用两数的和与积作整体代换,能取得事半功倍的效果。例1.若x=3-23 2,y=3 23-2,则3x2-5xy 3y2=。(1996年四川省初中数学竞赛试题)解:化简,得x=5-26,y=5 26。∴x y=10,xy=1.原式=3x2-5xy 3y2-5xy  =3(x y)2-11xy  =289。例2.已知x<0为实数,且x-1x=5,则x7 12x4 xx8 9x4 1的值为(  )。(A)-9319; (B)-1993;(C)-328; (D)-75。(1993年哈尔滨市初中数学竞赛试题)解:设1x=y,那么x-y=5,yx=1。∵x<0,y<0,  ∴x y=-(x-y)2 4xy=-3。∴x2 y2=(x-y)2 2xy=7。∴x7 12x4 xx8 9x4 1=(x7 12x4 x)÷x4(x8 9x4 1…  相似文献   

2.
消元思想是解方程组的基本思想,但还可应用于多元求值中,下面举例介绍几种消元途径. 1 代入消元 例1 若10xy--=,2220yy+-=,求 2()/xyy-的值. 解 由10xy--=,2220yy+-=, 得1xy=+,222yy=-. 则:原式2222(1)(2)22xyyyyy-+--== 3/23/2yy==. 2 加减消元 例2 如果435mnq++=,32mnq+-= 7-,求mq+的值. 解 由已知得435,327,mnqmnq++=+-=- ∴①3?②得:111122mq+= ∴2mq+=. 3 主元消元 例3 已知340xyz--=,280xyz+-= (0)z,求:222xyzxyyzzx++++的值. 解 视x、y为主元,z为常数,已知可求得: 3,2xzyz==, ∴2222214141111xyzzxyyzzxz++==++. 4 比值消元 例4 已…  相似文献   

3.
因式分解是初二代数中的重要内容之一 ,不论是在求代数式的值的计算还是代数式的证明中应用都十分广泛 ,现举例如下 :例 1 已知x2 - 2xy - 1 5y2 =0 ,求 xy 的值。分析 :本题利用二次三项式x2 +(p +q)x +pq =0型的因式分解 ,将x2 - 2xy - 1 5y2 =0通过因式分解化为二个二元一次方程 ,从而求出 xy 的值。解 :由已知x2 - 2xy - 1 5y2 =0得 :(x - 5y) (x +3y) =0只有当x - 5y =0或x +3y =0时 ,原式成立。∴x =5y或x =- 3y即 xy=5或 xy- 3例 2 已知 :x - 3z =5y ,求x2 - 2 5y2 +9z2 - 6xz的值。分析 :本题先从已知入手 ,通过移项得x - 3z - 5z…  相似文献   

4.
在分式的学习中 ,经常遇到含条件的分式求值问题。解答这类问题时 ,可根据题设和求式的特点 ,灵活运用代入法。下面以实例介绍代入法求分式值的几种途径。一、求值代入例 1.若 |x- y 3|与 |x y- 1995|互为相反数 ,则 x 2 yx- y的值是。( 1995年希望杯全国数学邀请赛初一试题 )解 :依题意 ,有|x- y 3| |x y- 1995|=0 ,∵ |x- y 3|≥ 0 ,|x y- 1995|≥ 0 ,∴ x- y 3=0 ,x y- 1995=0。解之 ,x=996,y=999,∴原式 =996 2× 999996- 999=- 998。二、比值代入例 2 .若 x2 =y3,则 7x2 - 3xy 2 y22 x2 - 3xy 7y2 的值是。( 1995年大连市初中数学竞赛…  相似文献   

5.
根据题型数值结构特征 ,选用恰当的化简技巧 ,是解决课本二次根式题的关键。一、变换所求 ,以简改繁例 1 已知 x=12 (7+5 ) ,y=12 (7- 5 ) ,求 x2 - xy+ y2 的值。 (课本 P2 2 0第 7题 )解 :当 x =12 (7+5 ) ,y=12 (7- 5 )时 ,原式 =(x- y) 2 + xy   =(5 ) 2 + 14 (7- 5 )   =112 。二、化简变形 ,化难为易例 2 已知 x=3+ 23- 2,y= 3- 23+ 2,求 xy+ yx的值。 (课本 P2 2 1B组第 3题 )解 :∵ x=- 7- 43,y=- 7+ 4 3,∴ x+ y=- 14 ,xy=1。∴原式 =x2 + y2xy =(x+ y) 2 - 2 xyxy    =(- 14 ) 2 - 2× 1=194。三、变形凑零 ,捷足先登…  相似文献   

6.
大家都知道,判别式主要应用于判断一元二次方程根的情况,这类问题比较简单,下面介绍判别式其他方面的一些应用·一、求条件最值问题例1已知实数x,y满足x2-12y=0,求x-3y的最值·分析:运用设“k”法消去y,即可整理成x的一元二次方程·解:设x-3y=k,则y=x3-k,代入x2-12y=0,化简得x2-4x+4k=0,所以Δ=(-4)2-4×1×4k≥0,所以k≤1,所以x-3y有最大值为1,无最小值·例2已知实数x,y满足条件x2+xy+y2=1,求x2+y2的最值·解:设x2+y2=k,则x2+ky2=1,代入x2+xy+y2=1=x2+ky2,化简得(1-1k)x2+xy+(1-1k)y2=0·整理为yx的一元二次方程为(1-1k)(xy)2+(xy)+(1-1k)=…  相似文献   

7.
一、风光依旧的变换求值题 例1 (2008年·烟台市)已知x(x-1)-(x2-y)=-3,求x2+y2-2xy的值. 分析:先将已知条件化简,再将x2+y2-2xy逆用完全平方公式,最后代入即可.  相似文献   

8.
求代数式的值是初中数学非常重要的代数问题,它题型多样,形式多变,是培养学生多向思维和创新能力的一种重要题型。其“代入”思想是解题的主要思想,代入技巧的掌握可以有效地培养学生分析问题的能力和极大地激发学生学习数学的兴趣。1已知字母的值,求代数式的值———基本题型这类题型主要采用单项式代入法例1,已知:a=-1,b=-2,c=21,求代数式4ac-b2值(解略)2未知字母取值,求代数式的值2.1利用已知条件求出字母的值———采用单项式代入法2.1.1利用解方程(组)求字母的值例2,已知:a-2=0,求代数式(3-a)2-2(a-1)+3的值。分析:由a-2=0,可得a=2,代入原式即可求值。例3,已知:(x-2)2+︱x-2y︱=0,求代数式3x一2y2的值。分析:由非负数的性质可知.xx--22y==00得xy==12再代入求值。2.1.2利用因式分解求字母的值。例4,已知:a2-b2+2b-l=0,求3a2-2b2的值。分析:由已知利用因式分解可得(a+b-1)(a-b+1)=0再利用性质“若ab=0,则a=0,或b=0”得到a+b-1=0a-b+1=0即可求出ab==10再代入求值。2.1.3利用概念求字母...  相似文献   

9.
解方程组的基本思想是消元。事实上 ,这种消元的思想还可应用于多元求值中。下面举例介绍多元求值的几种消元途径。一、代入消元例 1 若 x- y- 2 =0 ,2 y2 -y- 4 =0 ,则 xy- y的值是 (   )(A) 12 ;   (B) 2 ;(C) 12 ,2 ;  (D) 12 ,2或 - 12 。解 :由 x- y- 2 =0 ,2 y2 - y- 4 =0 ,得x=y 2 ,2 y2 =y 4。原式 =2 x- 2 y22 y=2 (y 2 ) - (y 4)2 y=12 。二、加减消元例 2 已知 3a b 2 c=3,a 3b 2 c=1 ,求 2 a c的值。解 :已知两等式联立为3a b 2 c=3,a 3b 2 c=1。∴ 3(3a b 2 c) - (a 3b 2 c) =8,即 8a 4c=8,∴ 2 a c=2。三、比值消元…  相似文献   

10.
一、利用对称式求解例 1 .已知 :a=15- 2 ,b=15 2 ,求a2 b2 7的值。解 :由题设可得 a b=2 5,ab=1。∴原式 =( a b) 2 - 2 ab 7=( 2 5) 2 - 2 7=2 5=5。二、定义法求解例 2 .已知 y=x- 8 8- x 1 8,求代数式 x yx - y- 2 xyx y - y x的值。解 :依据二次根式的定义 ,知 x- 8≥ 0 ,且 8- x≥ 0 ,∴ x=8,从而 y=1 8。∴原式 =x yx - y- 2 ( xy) 2xy( x - y )=( x - y ) 2x - y =x - y=8- 1 8=- 2 。三、用非负数性质求解例 3.如果 a b | c- 1 - 1 | =4a- 2 2 b 1 - 4,那么 a 2 b- 3c=。解 :将原条件式配方 ,得 ( a- 2 - 2 ) …  相似文献   

11.
一、化简代入技巧例1先化简,再求值。ba-b·a3+ab2-2a2bb3÷b2-a2ab+b2,其中a=23,b=-3。解:待求式=ba-b·a(a-b)2b3·b(b-a)=-ab=-23÷(-3)=29。二、求值代入技巧例2已知a(a-2)-(a2-2b)=-4,则a2+b22-ab=。解:∵a(a-2)-(a2-2b)=-4,∴a2-2a-a2+2b=-4,∴-2(a-b)=-4,a-b=2,故a2+b22-ab=(a-b)22=222=2。三、换元代入技巧例3如果x:y:z=1:3:5,那么x+3y-zx-3y+z=。23,则。解:设x=k,y=3k,z=5k,则x+3y-zx-3y+z=k+9k-5kk-9k+5k=5k-3k=-53。四、和积代入技巧例4已知x=樤3+樤2,y=樤3-樤2,试求2xyx2-y2+xx+y-yy-x的值。解:由题设得,x+y=2樤3,x-y=2樤2,xy=1…  相似文献   

12.
每年的中考与竞赛都有代数式求值这类题,并且这些题的解法各异,灵活多样.解这类题,若能抓住题目的特点,巧妙代入,就可达到事半功倍的效果.一、直接代入求值例1已知x=2-3√,求2-x(7+43√)x2-(2+3√)x+3√的值.解:把x=2-3√代入,得原式=2-(2-3√)(7+43√)(2-3√)2-(2+3√)(2-3√)+3√=3√(7+43√)(7-43√)-(2+3√)(2-3√)+3√=3√1-1+3√=1.二、先化简,后代入求值例2已知x=2√+2,求x3x-1-x2-x-1的值.解:原式=x3-(x-1)(x2+x+1)x-1=x3-(x3-1)x-1=1x-1.当x=2√+2时,原式=12√+2-1=12√+1=2√-1.三、先代值,后化简求值例3已知x=3√,y=2,那么代数式…  相似文献   

13.
在含有两个字母x、y的多项式中,如果同时以x代替y,y代替x后,得到的多项式与原来的多项式完全相同,那么称这个多项式是关于x、y的对称多项式.容易发现关于x、y的对称多项式都可以表示成关于x+y和xy的式子,如x2+y2=(x+y)2-2xy、y x+x y=x2+y2xy=(x+y)2-2xy xy等等,利用对称多项式这一性质,我们可以智取二次根式的有关求值问题.例1.已知x=3姨+1、y=姨3-1,求x2+2xy+y2的值.分析:如果直接将x、y的值代入计算  相似文献   

14.
分式的求值问题,涉及到分式的运算法则、约分、通分、乘法公式、因式分解等多个知识点.利用分式运算中的一些技巧,可以达到化繁为简、巧妙求解的目的. 一、整体代入法例1 已知1/x+1/y=5,求(2x-5xy+2y)/(x+2xy+y)的值. 解法1:因1/x+1/y=5,故xy≠0.  相似文献   

15.
给出条件的代数式求值问题是中考中的常见题型.解决这种问题的方法多姿多彩,“整体方法”是其中一道亮丽的风景.例1若xy=a,1x2+1y2=b(b>0),则(x+y)2的值为().A.b(ab-2)B.b(ab+2)C.a(ab-2)D.a(ab+2)分析先将条件式变形,再整体代入求值式求值.解b=1x2+1y2=x2+y2x2y2=(x+y)2-2xyx2y2=(x+y)2-2aa2,故(x+y)2=a2b+2a=a(ab+2).选D.例2已知a+b=-8,ab=6化简bba姨+aab姨=________.分析先将求值式变形,再把条件式整体代入求值,在变形过程要注意a<0,b<0.解原式=-baab姨-abab姨=-ab姨a2+b2ab=-ab姨(a+b)2-2abab=-6姨64-126=-2636姨.填-2636姨.例3已知x=…  相似文献   

16.
代数式的求值问题是各类竞赛中的常见题型,其基本方法是代入法.灵活、恰当地变形,巧妙地进行整体代入,既是一种重要的解题思想,又是一种化难为易的解题技巧.下面以一些竞赛题为例加以说明.例1已知x2+xy=3,xy+y2=-2,则2x2-xy-3y2=().(2001年湖北初中数学竞赛试题)解:∵x2+xy=3,xy+y2=-2,∴2x2-xy-3y2=2(x2+xy)-3(xy+y2)=6+6=12.例2已知x2-x-1=0,则x3-2x+1的值是().(2001年香港初中数学竞赛试题)解:∵x2-x-1=0,∴x2=x+1,则x3…  相似文献   

17.
根据条件求代数式的值是常见的一类题型。现举例说明其求解方法. 一、变形所求式,整体代入例1 若x-y z=1,x2 y2-z2=-2,求代数式:2(x2-y2-z2)-(2x-2y-3y3)-(-y2 2x)的值. 解:∵x-y z=1,x2 y2-z2=-2, ∴原式=2x2-2y2-2z2-2x 2y 3y2 y2-2z  相似文献   

18.
1.用于求值 例1 求满足5x2=12xy+8y2-4x+4y+1=0的实数x和y的值.  相似文献   

19.
二次根式求值问题是二次根式学习中常见的一种问题.解答它们,仅仅考虑常规的先化简后代入的方法有时很难奏效,必须巧用一些其他的方法. 一、巧用二次根式的定义 例1 已知x、y为实数,且满足√1+x-(y-1)√1-y=0,则x2011-y2011=______. 分析:由二次根式的定义,得√1 +x ≥0、√1-y≥0,那么y-1≥0.又1-y≥0,则y的值可以求出.随之,x的值也可以求出. 解:已知等式为√1+x=(y-1)√1-y. ∵√1+x≥0,√1-y≥0, ∴√y-1≥0,1-y≤0. 又∵1-y≥0, ∴1-y=0,y=1. 把y=1代入已知等式,得√1+x=0,x=-1. 则求式=(-1)2011-1=-2.  相似文献   

20.
在代数式求值运算中,把所求代数式尽量化简或将已知条件适当变形,然后直接或间接求值,可达到巧算的目的。一、利用已知条件进行适当变形直接求值。例1已知:x y=10,x3 y3=100,求x2 y2的值。分析:如果由已知列方程组,求出x,y的值,再代入求值较为繁杂。我们利用已知条件适当变形,即可简单求值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号