首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In microcirculation, red blood cells (RBCs) flowing through bifurcations may deform considerably due to combination of different phenomena that happen at the micro-scale level, such as: attraction effect, high shear, and extensional stress, all of which may influence the rheological properties and flow behavior of blood. Thus, it is important to investigate in detail the behavior of blood flow occurring at both bifurcations and confluences. In the present paper, by using a micro-PTV system, we investigated the variations of velocity profiles of two working fluids flowing through diverging and converging bifurcations, human red blood cells suspended in dextran 40 with about 14% of hematocrit level (14 Hct) and pure water seeded with fluorescent trace particles. All the measurements were performed in the center plane of rectangular microchannels using a constant flow rate of about 3.0 × 10−12 m3/s. Moreover, the experimental data was compared with numerical results obtained for Newtonian incompressible fluid. The behavior of RBCs was asymmetric at the divergent and convergent side of the geometry, whereas the velocities of tracer particles suspended in pure water were symmetric and well described by numerical simulation. The formation of a red cell-depleted zone immediately downstream of the apex of the converging bifurcation was observed and its effect on velocity profiles of RBCs flow has been investigated. Conversely, a cell-depleted region was not formed around the apex of the diverging bifurcation and as a result the adhesion of RBCs to the wall surface was enhanced in this region.  相似文献   

2.
Even though isoelectric focusing (IEF) is a very useful technique for sample concentration and separation, it is challenging to extract separated samples for further processing. Moreover, the continuous sample concentration and separation are not possible in the conventional IEF. To overcome these challenges, free flow IEF (FFIEF) is introduced in which a flow field is applied in the direction perpendicular to the applied electric field. In this study, a mathematical model is developed for FFIEF to understand the roles of flow and electric fields for efficient design of microfluidic chip for continuous separation of proteins from an initial well mixed solution. A finite volume based numerical scheme is implemented to simulate two dimensional FFIEF in a microfluidic chip. Simulation results indicate that a pH gradient forms as samples flow downstream and this pH profile agrees well with experimental results validating our model. In addition, our simulation results predict the experimental behavior of pI markers in a FFIEF microchip. This numerical model is used to predict the separation behavior of two proteins (serum albumin and cardiac troponin I) in a two-dimensional straight microchip. The effect of electric field is investigated for continuous separation of proteins. Moreover, a new channel design is presented to increase the separation resolution by introducing cross-stream flow velocity. Numerical results indicate that the separation resolution can be improved by three folds in this new design compare to the conventional straight channel design.  相似文献   

3.
The confined flow of red blood cells (RBCs) in microvasculature is essential for oxygen delivery to body tissues and has been extensively investigated in the literature, both in vivo and in vitro. One of the main problems still open in microcirculation is that flow resistance in microcapillaries in vivo is higher than that in vitro. This discrepancy has been attributed to the glycocalyx, a macromolecular layer lining the inner walls of vessels in vivo, but no direct experimental evidence of this hypothesis has been provided so far. Here, we investigate the flow behavior of RBCs in glass microcapillaries coated with a polymer brush (referred to as “hairy” microcapillaries as opposed to “bare” ones with no coating), an experimental model system of the glycocalyx. By high-speed microscopy imaging and image analysis, a velocity reduction of RBCs flowing in hairy microcapillaries as compared to bare ones is indeed found at the same pressure drop. Interestingly, such slowing down is larger than expected from lumen reduction due to the polymer brush and displays an on-off trend with a threshold around 70 nm of polymer brush dry thickness. Above this threshold, the presence of the polymer brush is associated with an increased RBC deformation, and RBC velocity is independent on polymer brush thickness (at the same pressure drop). In conclusion, this work provides direct support to the hypothesis that the glycocalyx is the main factor responsible of the higher flow resistance found in microcapillaries in vivo.  相似文献   

4.
The mechanical properties of red blood cells (RBCs) are critical to the rheological and hemodynamic behavior of blood. Although measurements of the mechanical properties of RBCs have been studied for many years, the existing methods, such as ektacytometry, micropipette aspiration, and microfluidic approaches, still have limitations. Mechanical changes to RBCs during storage play an important role in transfusions, and so need to be evaluated pre-transfusion, which demands a convenient and rapid detection method. We present a microfluidic approach that focuses on the mechanical properties of single cell under physiological shear flow and does not require any high-end equipment, like a high-speed camera. Using this method, the images of stretched RBCs under physical shear can be obtained. The subsequent analysis, combined with mathematic models, gives the deformability distribution, the morphology distribution, the normalized curvature, and the Young''s modulus (E) of the stored RBCs. The deformability index and the morphology distribution show that the deformability of RBCs decreases significantly with storage time. The normalized curvature, which is defined as the curvature of the cell tail during stretching in flow, suggests that the surface charge of the stored RBCs decreases significantly. According to the mathematic model, which derives from the relation between shear stress and the adherent cells'' extension ratio, the Young''s moduli of the stored RBCs are also calculated and show significant increase with storage. Therefore, the present method is capable of representing the mechanical properties and can distinguish the mechanical changes of the RBCs during storage. The advantages of this method are the small sample needed, high-throughput, and easy-use, which make it promising for the quality monitoring of RBCs.  相似文献   

5.
Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 103 from 3.3 × 103 WBCs.  相似文献   

6.
We show, via three-dimensional immersed-boundary-finite-element-lattice-Boltzmann simulations, that deformability-based red blood cell (RBC) separation in deterministic lateral displacement (DLD) devices is possible. This is due to the deformability-dependent lateral extension of RBCs and enables us to predict a priori which RBCs will be displaced in a given DLD geometry. Several diseases affect the deformability of human cells. Malaria-infected RBCs, for example, tend to become stiffer than their healthy counterparts. It is therefore desirable to design microfluidic devices which can detect diseases based on the cells'' deformability fingerprint, rather than preparing samples using expensive and time-consuming biochemical preparation steps. Our findings should be helpful in the development of new methods for sorting cells and particles by deformability.  相似文献   

7.
We have performed microfluidic experiments with erythrocytes passing through a network of microchannels of 20–25 μm width and 5 μm of height. Red blood cells (RBCs) were flowing in countercurrent directions through microchannels connected by μm pores. Thereby, we have observed interesting flow dynamics. All pores were blocked by erythrocytes. Some erythrocytes have passed through pores, depending on the channel size and cell elasticity. Many RBCs split into two or more smaller parts. Two types of splits were observed. In one type, the lipid bilayer and spectrin network were cut at the same time. In the second type, the lipid bilayer reconnected, but the part of spectrin network stayed outside the cell forming a rope like structure, which could eventually break. The microporous membrane results in multiple breakups of the cells, which can have various clinical implications, e.g., glomerulus hematuria and anemia of patients undergoing dialysis. The cell breakup procedure is similar to the one observed in the droplet breakage of viscoelastic liquids in confinement.  相似文献   

8.
We present a droplet-based microfluidic system for performing bioassays requiring controlled analyte encapsulation by employing highly flexible on-demand droplet generation. On-demand droplet generation and encapsulation are achieved pneumatically using a microdispensing pump connected to a constant pressure source. The system generates single droplets to the collection route only when the pump is actuated with a designated pressure level and produces two-phase parallel flow to the waste route during the stand-by state. We analyzed the effect of actuation pressure on the stability and size of droplets and optimized conditions for generation of stable droplets over a wide pressure range. By increasing the duration of pump actuation, we could either trigger a short train of identical size droplets or generate a single larger droplet. We also investigated the methodology to control droplet contents by fine-tuning flow rates or implementing a resistance bridge between the pump and main channels. We demonstrated the integrated chip for on-demand mixing between two aqueous phases in droplets and on-demand encapsulation of Escherichia coli cells. Our unique on-demand feature for selective encapsulation is particularly appropriate for bioassays with extremely dilute samples, such as pathogens in a clinical sample, since it can significantly reduce the number of empty droplets that impede droplet collection and subsequent data analysis.  相似文献   

9.
10.
An experiment was conducted to see how relevance feedback could be used to build and adjust profiles to improve the performance of filtering systems. Data was collected during the system interaction of 18 graduate students with SIFTER (Smart Information Filtering Technology for Electronic Resources), a filtering system that ranks incoming information based on users' profiles. The data set came from a collection of 6000 records concerning consumer health. In the first phase of the study, three different modes of profile acquisition were compared. The explicit mode allowed users to directly specify the profile; the implicit mode utilized relevance feedback to create and refine the profile; and the combined mode allowed users to initialize the profile and to continuously refine it using relevance feedback. Filtering performance, measured in terms of Normalized Precision, showed that the three approaches were significantly different (α=0.05 and p=0.012). The explicit mode of profile acquisition consistently produced superior results. Exclusive reliance on relevance feedback in the implicit mode resulted in inferior performance. The low performance obtained by the implicit acquisition mode motivated the second phase of the study, which aimed to clarify the role of context in relevance feedback judgments. An inductive content analysis of thinking aloud protocols showed dimensions that were highly situational, establishing the importance context plays in feedback relevance assessments. Results suggest the need for better representation of documents, profiles, and relevance feedback mechanisms that incorporate dimensions identified in this research.  相似文献   

11.
Objective: Fetus with intrauterine stress may exhibit programmed changes that can alter its metabolism and bear severe risk for diseases in adult life. The current study was designed to assess the correlation between cord blood lipid profile with the anthropometric data in neonates. Materials and methods: 146 newborn babies born at Dr. T M A Pai Hospital, Udupi were screened and their birth weight, length, head circumference and abdominal circumference were noted at birth. Umbilical cord blood samples were analyzed for total cholesterol, triglycerides (TG), high density lipoprotein (HDL) and low density lipoprotein (LDL). Infants were also grouped further based on gestational age (GA) and sex-adjusted birth weight percentiles into three groups i.e. Small for gestational age (SGA), Appropriate for gestational age (AGA) and Large for gestational age (LGA) for comparison of their lipid profiles. Inclusion criteria were normal fetal heart rate at birth and an APGAR score >7. Statistical significance of relation between lipid profile and anthropometry was done using ANOVA and Pearson correlation coefficient. Results: Triglycerides were significantly higher in babies with higher ponderal index (PI) than those with lower PI (P = 0.011). The TG level of SGA babies were significantly higher as compared to AGA group (P = 0.001). The LDL levels in neonates with higher abdominal circumference were significantly lower than those with lower AC (P = 0.019). Mean HDL levels were higher in neonates with larger AC, but not statistically significant. Maternal BMI had no influence on neonates’ lipid profile. Conclusion: Abnormal intrauterine milieu created by maternal changes during gestation may bear a profound impact on lipid metabolism in neonates, which may account for their differences in lipid profile and anthropometry at birth.  相似文献   

12.
In this study, microneedles which possess sharp tips were utilized to trap and detect the biomolecules. Owing to the large curvature, the tips of the microneedles created a substantially high gradient of electric field under the non-uniform electric field which served as not only the trapping sites but also the substrate for surface enhanced Raman scattering (SERS). Separation of polystyrene microparticles with different sizes and two kinds of biomolecules (Staphylococcus aureus (S. aureus) and the red blood cells (RBCs)) were demonstrated. Moreover, in situ detection of S. aureus was performed immediately after separation was completed. The results showed that, after 15 s of sample collection, the Raman signals of S. aureus were detected and greatly enhanced through SERS effect.  相似文献   

13.
Red blood cell (RBC) aggregation is a multifaceted phenomenon, and whether it is generally beneficial or deleterious remains unclear. In order to better understand its effect on microvascular blood flow, the phenomenon must be studied in complex geometries, as it is strongly dependent on time, flow, and geometry. The cell-depleted layer (CDL) which forms at the walls of microvessels has been observed to be enhanced by aggregation; however, details of the characteristics of the CDL in complex regions, such as bifurcations, require further investigation. In the present study, a microchannel with a T-junction was used to analyze the influence of aggregation on the flow field and the CDL. Micro-PIV using RBCs as tracers provided high resolution cell velocity data. CDL characteristics were measured from the same data using a newly developed technique based on motion detection. Skewed and sharpened velocity profiles in the daughter branches were observed, contrary to the behavior of a continuous Newtonian fluid. RBC aggregation was observed to increase the skewness, but decrease the sharpening, of the velocity profiles in the daughter branches. The CDL width was found to be significantly greater, with a wider distribution, in the presence of aggregation and the mean width increased proportionally with the reciprocal of the fraction of flow entering the daughter branch. Aggregation also significantly increased the roughness of the interface between the CDL and the RBC core. The present results provide further insight into how RBC aggregation may affect the flow in complex geometries, which is of importance in both understanding its functions invivo, and utilizing it as a tool in microfluidic devices.  相似文献   

14.
The non-Newtonian properties of blood are of great importance since they are closely related with incident cardiovascular diseases. A good understanding of the hemodynamics through the main vessels of the human circulatory system is thus fundamental in the detection and especially in the treatment of these diseases. Very often such studies take place in vitro for convenience and better flow control and these generally require blood analogue solutions that not only adequately mimic the viscoelastic properties of blood but also minimize undesirable optical distortions arising from vessel curvature that could interfere in flow visualizations or particle image velocimetry measurements. In this work, we present the viscoelastic moduli of whole human blood obtained by means of passive microrheology experiments. These results and existing shear and extensional rheological data for whole human blood in the literature enabled us to develop solutions with rheological behavior analogous to real whole blood and with a refractive index suited for PDMS (polydymethylsiloxane) micro- and milli-channels. In addition, these blood analogues can be modified in order to obtain a larger range of refractive indices from 1.38 to 1.43 to match the refractive index of several materials other than PDMS.  相似文献   

15.
Microfluidic spirals were used to successfully separate rare solid components from unpretreated human whole blood samples. The measured separation ratio of the spirals is the factor by which the concentration of the rare component is increased due to the Dean effect present in a flow profile in a curved duct. Different rates of dilution of the blood samples with a phosphate-buffered solution were investigated. The diameters of the spherical particles to separate ranged from 2 μm to 18 μm. It was found that diluting the blood to 20% is optimal leading to a separation ratio up to 1.97. Using two spirals continuously placed in a row led to an increase in separation efficacy in samples consisting of phosphate-buffered solution only from 1.86 to 3.79. Numerical investigations were carried out to display the flow profiles of Newtonian water samples and the shear-thinning blood samples in the cross-section of the experimentally handled channels. A macroscopic difference in velocity between the two rheologically different fluids could not be found. The macroscopic Dean flow is equally present and useful to help particles migrate to certain equilibrium positions in blood as well as lower viscous Newtonian fluids. The investigations highlight the potential for using highly concentrated, very heterogeneous, and non-Newtonian fluidic systems in known microsystems for screening applications.  相似文献   

16.
The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures.  相似文献   

17.
Examining 2148 innovating service firms from the Spanish Technological Innovation Panel 2004, this paper utilizes Latent Class Analysis to appraise the scope of innovation cooperation in services in the Spanish economy, in accordance with the growing weight of external information flows throughout innovation processes. The empirical evidence indicates that the nature of the service activity affects both the partner chosen and the cooperation intensity. The results lead to the creation of a typology of cooperation composed of three broad profiles: service firms intensive in techno-scientific cooperation, intensive in interactions with clients and a profile with low intensity in cooperation, called lonely innovators. The probability that a firm belongs to the latter profile is 59%, which makes it reasonable to affirm that innovation cooperation is not a common practice in Spanish innovating service enterprises. Innovation output variables have been included in order to examine the relationship between patterns of cooperation and innovation performance. The findings also underline the co-existence of different cooperation patterns within the same industry.  相似文献   

18.
Wei Hou H  Gan HY  Bhagat AA  Li LD  Lim CT  Han J 《Biomicrofluidics》2012,6(2):24115-2411513
Sepsis is an adverse systemic inflammatory response caused by microbial infection in blood. This paper reports a simple microfluidic approach for intrinsic, non-specific removal of both microbes and inflammatory cellular components (platelets and leukocytes) from whole blood, inspired by the invivo phenomenon of leukocyte margination. As blood flows through a narrow microchannel (20 × 20 µm), deformable red blood cells (RBCs) migrate axially to the channel centre, resulting in margination of other cell types (bacteria, platelets, and leukocytes) towards the channel sides. By using a simple cascaded channel design, the blood samples undergo a 2-stage bacteria removal in a single pass through the device, thereby allowing higher bacterial removal efficiency. As an application for sepsis treatment, we demonstrated separation of Escherichia coli and Saccharomyces cerevisiae spiked into whole blood, achieving high removal efficiencies of ∼80% and ∼90%, respectively. Inflammatory cellular components were also depleted by >80% in the filtered blood samples which could help to modulate the host inflammatory response and potentially serve as a blood cleansing method for sepsis treatment. The developed technique offers significant advantages including high throughput (∼1 ml/h per channel) and label-free separation which allows non-specific removal of any blood-borne pathogens (bacteria and fungi). The continuous processing and collection mode could potentially enable the return of filtered blood back to the patient directly, similar to a simple and complete dialysis circuit setup. Lastly, we designed and tested a larger filtration device consisting of 6 channels in parallel (∼6 ml/h) and obtained similar filtration performances. Further multiplexing is possible by increasing channel parallelization or device stacking to achieve higher throughput comparable to convectional blood dialysis systems used in clinical settings.  相似文献   

19.
Alternating current (AC) dielectrophoresis (DEP) experiments for biological particles in microdevices are typically done at a fixed frequency. Reconstructing the DEP response curve from static frequency experiments is laborious, but essential to ascertain differences in dielectric properties of biological particles. Our lab explored the concept of sweeping the frequency as a function of time to rapidly determine the DEP response curve from fewer experiments. For the purpose of determining an ideal sweep rate, homogeneous 6.08 μm polystyrene (PS) beads were used as a model system. Translatability of the sweep rate approach to ∼7 μm red blood cells (RBC) was then verified. An Au/Ti quadrapole electrode microfluidic device was used to separately subject particles and cells to 10Vpp AC electric fields at frequencies ranging from 0.010 to 2.0 MHz over sweep rates from 0.00080 to 0.17 MHz/s. PS beads exhibited negative DEP assembly over the frequencies explored due to Maxwell-Wagner interfacial polarizations. Results demonstrate that frequency sweep rates must be slower than particle polarization timescales to achieve reliable incremental polarizations; sweep rates near 0.00080 MHz/s yielded DEP behaviors very consistent with static frequency DEP responses for both PS beads and RBCs.  相似文献   

20.
Clinical point of care testing often needs plasma instead of whole blood. As centrifugation is labor intensive and not always accessible, filtration is a more appropriate separation technique. The complexity of whole blood is such that there is still no commercially available filtration system capable of separating small sample volumes (10-100 μl) at the point of care. The microfluidics research in blood filtration is very active but to date nobody has validated a low cost device that simultaneously filtrates small samples of whole blood and reproducibly recovers clinically relevant biomarkers, and all this in a limited amount of time with undiluted raw samples. In this paper, we show first that plasma filtration from undiluted whole blood is feasible and reproducible in a low-cost microfluidic device. This novel microfluidic blood filtration element (BFE) extracts 12 μl of plasma from 100 μl of whole blood in less than 10 min. Then, we demonstrate that our device is valid for clinical studies by measuring the adsorption of interleukins through our system. This adsorption is reproducible for interleukins IL6, IL8, and IL10 but not for TNFα. Hence, our BFE is valid for clinical diagnostics with simple calibration prior to performing any measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号