首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
设绝对值不等式:|f(x)|<|g(x)|或|f(x)|),g(x)可以是常数也可以是函数。 一、型如|f(x)|<|g(x)|(或≤、≠、≥、>)的绝对值不等式。 ∵0≤|f(x)|<|g(x)|<+∞ ∴|f(x)|~2<|g(x)|~2  相似文献   

2.
近年来,高考对绝对值函数的考察有所加 强,复习时要加以注重,本文展示一些. 1.分母含绝对值 例1已知函数 f(x)一。一兴(。。R). ①② (1)若f(x)相似文献   

3.
抽象函数是没有给出具体解析式的函数,内容一般涉及到函数的单调性、周期性、奇偶性,不等式性质、解不等式或不等式组、数学归纳法等;题型常有求值、求字母范围、比较函数值的大小、解不等式、证明和开放型题(缺少条件或结论的题)等.掌握抽象函数问题的解法,可以加深我们对函数本质的认识,提高分析和解决问题的能力 一、取特殊值法 例1 已知f(x)在(0,+∞)上有定义,且满足条件:(1)f(x)在(0,+∞)上单调递减,且f(x)≥1/x2;  相似文献   

4.
<正>以函数为背景的绝对值不等式的求解或在含绝对值的不等式成立背景下求参数的取值范围问题是高考的重点题型.本文以2020年一道全国高考试题为例,多视角探究这类问题的解法.一、试题呈现试题已知函数f(x)=|x-a2|+|x-2a+1|.(1)当a=2时,求f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.二、解法探究1.第(1)问的思路分析与解答分析1 将a=2代入化简函数,利用零点划分区间讨论求解不等式.  相似文献   

5.
绝对值符号||好比两道墙,打开两道墙,绝对值不等式就可以转化为不含绝对值的不等式.用什么方法,打开两道墙,解决绝对值不等式的问题呢?一、零点讨论法f(x)=0的解叫|f(x)|的零点,根据零点分成各区间的符号,即可去掉绝对值.  相似文献   

6.
在解含有绝对值的不等式时,通常我们去掉绝对值再求解,但在有一些问题中,添加绝对值也会取得求解的途径。下面给出两个例题加以说明。例1 求函数y=sinx+Z/sinx的值域。分析:在定义域x≠kπ(k∈Z)内,用“均值不等式”或用“函数的有界性”求此函数y的值域,均难奏效;若用“换元法”令t=sinx,则y=f(x)=t+Z/t,t∈E[-1,0)∪(0,1],转化由函数y=f(t)的单调性求值域,计算过程冗长;但由y=(sin~2x+2)/sinx两边添上绝对值,则可用“均值不等式”简明解出。解:由y=(sin~2x+2)/sinx得  相似文献   

7.
解绝对值不等式通常都比较繁琐,本文就|f(x)|>g(x)与|f(x)|0恒成立,则不等式 |f(x)|>g(x) (1)与不等式 f(x)-g(x)>0 (2)同解。  相似文献   

8.
<正>在人教版数学选修4-5《不等式选讲》中,我们学习了不等式|f(x)|>g(x)的两种解法,掌握了解绝对值不等式的关键是去"||"符号,去绝对值的依据是"||"的定义,解绝对值不等式的常用方法是分类讨论。解法一:根据绝对值的定义,将不等式|f(x)|>g(x)去绝对值,则|f(x)|>  相似文献   

9.
曾荣 《中学理科》2003,(8):10-11
特例法是解高考选择题的一种应用频率很高的间接法 .在近几年高考选择题中 ,归纳出以下八类问题常用特例法进行求解 .一、关于不等式解集的问题【例 1】  ( 2 0 0 2年全国高考 )不等式 ( 1 +x) ( 1 -|x|) ≥ 0的解集是 (   ) .A {x| 0 ≤x <1 }B {x|x<0且x≠-1 }C {x|-1 相似文献   

10.
对于较复杂的分式不等式()()a f xb???<(1)然后一一求解,最后求它们的交集,但这种方法比较繁琐,而对于不等式组(1)可等价于()0,()0,()()0,()()0,()()0,()()0.g x g xf x ag x f x ag xf x bg x f x bg x???>?>???亦可等价于[f(x)?ag(x)][f(x)?bg(x)]<0,即有下列的结论:不等式()()()a f xb a b相似文献   

11.
<正>构造函数法是一种常用的解题方法,比如函数与方程、不等式问题,小题中构造可导函数解不等式是常见题型,如果巧妙地构造函数,进而研究函数的性质,问题就会迎刃而解,下面就几种题型和大家一起交流一下。一、构造f(x)±g(x)型例1定义在R上的函数f(x),其导函数f'(x)满足f'(x)>1,且f(2)=3,则关于x的不等式f(x)相似文献   

12.
兰英 《考试》1999,(Z2)
例1.解不等式、/不丙一勺万二兹>3〔l一x)解:构造函数f(x)一、/产妥不革一了不瓜+3x在〔一4,冬〕上是增函数. 乙又丫f(1)一3:.原不等式变形为f(x)>3一f(1).’.x>1~一一~,、,,一、.__一7则原不等式的解为1o 解:构造函数f(x)一x(1+、/万石),x任R. f(x)在〔0,+oo)上是增函数. 又f(一x)一一x(z+v仗不几)一一f(x) :’f(x)为奇函数,从而f(x)在(一二,+二)上是增函数. 则不等式可化为f(x+l)+f(x)>o 即f(x+l)>一f(x)=f(一x…  相似文献   

13.
一、解函数题例1.方程lgx+x-3=0的解x0所在区间为以下选项中的哪一个?A(0,1)B(1,2)C(2,3)D(3,∞)解析:如图1,先构造函数f(x)=lgx与g(x)=3-x并作出它们的图象,如图1可知可以确定x∈(1,3),但f(2)-g(2)=lg2-1<0,即x=2时,f(x)2.同理:f(3)-g(3)=lg3-0>0,即x=3时,知f(x)>g(x),∴x0<3.∴答案为C.例2.求函数y=x√+1-x√的值域.解析:作y1=x√,y2=1-x√的图象,如图2,由函数图1的定义域为[0,1]和图象知:函数在x=0,x=1时,有最小值1;在x=12时,取最大值2√.(对称性图象)∴函数的值域是[1,2√].二、解不等式例3.求不等式5-4x-x2√≥x解集.图2…  相似文献   

14.
一、构造函数图像解不等式例1如图1所示,函数y=f(x)的图像是中心在原点、焦点在x轴上的椭圆的两段弧,则不等式f(x)0).解析函数y=2x a可以看作是斜率为2、截距为a的直线,函数y=!a2-x2的图像是以原点为圆心,a为半径的在x轴上方的半圆,如图2所示.当0相似文献   

15.
策略分析 转化是解决问题的重要杠杆.为解问题(2),首要的是去掉绝对值符号.根据函数f(x)的单调性以及不等式的对称性(不妨设0〈x1≤x2),可同时去掉两个绝对值号作等价转化,使问题等价于研究辅助函数g(x):f(x)+4x在(0,+∞)的单调性问题.  相似文献   

16.
用导数证明不等式是证不等式的一种重要方法,证明过程往往简捷、明快,特别是证明超越不等式,更是如鱼得水.证明的第一步要考虑如何构造函数,是证明的关键.若函数构造恰当,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式.本文谈谈在用导数证明不等式时,构造辅助函数的几种常用途径.途径一构造差函数直接作差,即构造差函数,是构造辅助函数的最主要方法.例1求证:不等式x-x22<1n(1+x)0,所以y=f(x)在(0,+∞)上单调递增,因为x>0,且f(x)在…  相似文献   

17.
<正>在解不等式或恒成立问题中,有很大一部分题目是由函数单调性构造出来的,若能找出这些函数模型(即不等式或等式两边对应的同一函数),无疑会大大加快解决这些问题的速度.比如F(x)≥0能等价变形成f [g(x)]≥f [h(x)],然后利用函数f(x)的单调性,再转化为g(x)≥h(x)(或者g(x)≤h(x)),这种方法称为同构不等式法(等号成立时,称为同构等式法),简称同构法.  相似文献   

18.
含参数不等式的问题,是中学数学中最为常见的题型之一.解题思想方法比较丰富,思维程度较高、综合性强,是近几年高考中的重点和难点,学生在解题时往往感到无从下手,在高考中得分不高.而解决此类问题需要学生灵活地进行适当转化,综合运用所学知识,方可取得较好的解题效果.下面就高考中比较常见的几类问题,谈谈个人的浅见供参考.问题一解含有参数的不等式例1(2005年江西卷,理17)已知函数f(x)=axx+2b(a,b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.(Ⅰ)求函数f(x)的解析式;(Ⅱ)设k>1,解关于x的不等式:f(x)<(k+21-)xx-k.解析:本题主要考查…  相似文献   

19.
路径一:正确理解函数概念是解决有关函数问题的关键.路径一:正确理解函数概念是解决有关函数问题的关键.例1已知函数f(x)的定义域是[0,1],求f(x2)的定义域。分析:要解决这一问题需明确:(1)定义域是自变量x的取值范围;(2)f(x)制约的是x,而f(x2)制约的是x2.解:由不等式0≤x2≤1得-1≤x≤1,即函数f(x2)的定义域为[-1,1].路径二:函数的性质是由x的变化决定的,如奇偶性、单调性都是针对x而言的,而不是针对x的某个表达式.  相似文献   

20.
在数学解题中经常碰到有关恒成立问题 ,解决这类问题的方法尽管很多 ,但都离不开一些基本的数学思想 ,如化归思想、函数思想、方程思想等等 .笔者在平时的教学过程中对这类问题的解法作了一点归纳 ,供大家参考 .一、利用一次函数的性质对于一次函数 f(x) =kx +b,x∈ [m ,n] ,有f(x) >0恒成立 f(m) >0 ,f(n) >0 ;f(x) <0恒成立 f(m) <0 ,f(n) <0 .例 1  |p| <2 ,p∈R ,欲使不等式(log2 x) 2 +(p-2 )log2 x+1-p >0恒成立 ,求x的取值范围 .分析 若直接解关于log2 x的不等式 ,再由 p的取值范围求出x的取值范围 ,不仅化简过程十分繁杂 ,而…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号