首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>问题已知函数f(x)=x+4/x,g(x)=2x+a.若?x1∈[1/2,1],?x2∈[2,3],使f(x1)≥g(x2)恒成立,求实数a的取值范围.解当x∈[1/2,]1时,f’(x)=1-4/x2<0,f(x)单调减,可得f(x)在[1/2,1]的最小值f(x)min=f(1)=5.又g(x)=2x+a单调增,故g(x)在[2,3]的最大值g(x)max=g(3)=8+a.  相似文献   

2.
2010年高考湖北卷文科压轴题第21题:设函数f(x)=1/3x3-a/2x2+bx+c,其中a>0.曲线y=f(x)在点P(0,f0))处的切线方程为y=1.(1)确定b,c的值;(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2).证明:当x1≠x2时,f’(x1)≠f’(x2);(3)略.本题第(2)问命题组提供的答案是:  相似文献   

3.
第1点导数与函数()必做1已知函数f(x)=eax·(a/x+a+a),其中a≥-1.(1)求f(x)的单调递减区间;(2)若存在x1>0,x2<0,使得f(x12),求a的取值范围.牛刀小试破解思路第(1)问求出导数后,分a=-1,-10求出单调递减区间.第(2)问注意理解条件是存在x1>0,x2<0,使得f(x12),可以直接论证或者构造反例求解.  相似文献   

4.
<正>试题呈现已知函数f(x)=ex[x2-(a+2)x+a+3].(1)讨论f(x)的单调性;(2)若f(x)在(0,2)有两个极值点x1,x2,求证:f(x1)f(x2)<4e2.本题是泉州市2023届高中毕业班质量监测一第22题.试题题干简洁、朴实无华,问题(2)给人的第一感觉是极值点偏移问题,但深入思考之后发现其与极值点偏移问题并无关联.  相似文献   

5.
<正>一、试题再现已知函数f(x)=ex/x-ln x+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.本题是2022年全国甲卷导数压轴题.第(1)问已知不等式求参数的取值范围,难度中等;第(2)问考查导数的应用,属于极值点偏移问题,难度偏难.  相似文献   

6.
<正>试题呈现 已知函数f(x)=ex-1-a(x-1).(1)讨论f(x)的零点个数;(2)若f(x)有两个不同的零点x1,x2,证明:x1+x2>4.上述试题是广东省清远市2022年高三期末教学质检第22题,试题在素材的选取以及问题的铺设方面均与2016年全国卷Ⅰ理科数学第21题:已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.  相似文献   

7.
<正>例设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时,f(x)≥0,求a的取值范围.参考答案如下:(1)a=0时,f(x)=ex-1-x,f′(x)=ex-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)上单调减少,在(0,+∞)上单调增加.  相似文献   

8.
题目(2012年江苏高考18题)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和  相似文献   

9.
《教学考试》2023,(2):65-69
<正>【原创创新试题组】【原创1】(多选)已知■,则下列不等式有可能成立的是 ( )■【原创2】请写出一个函数f(x)=___,同时满足下列三个条件:①f(x)的最小正周期为4π;②f(x)的一条对称轴为直线■;③f(x)的最大值为2.【原创3】若对任意的0121ex2-x2ex1>ex2+1lnx1-ex1+1lnx2成立,则实数a的最大值为___.  相似文献   

10.
<正>题目已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(1)求a的值;(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.本题主要考查导数的计算、导数的几何意义以及曲线交点个数的判断即零点问题,同时考查学生的计算能力、推理论证能力以及运用有关知识分析问题和解决问题的能力.利用导数和函数单调性之间的关系是解决本题的关键.第(1)问较为基础,  相似文献   

11.
<正>含有任意和存在的双变量问题是数学中常见的两类题型,常见解法是考虑两者之间的最值和值域关系来解题.题型1:?x1∈D1,?x2∈D2,f(x1)=g(x2)?f(x1)值域是g(x2)值域的子集.题型2:?x1∈D1,?x2∈D2,f(x1)=g(x2)?f(x1)值域与g(x2)值域的子集交集非空.若遇到双变量不是前两种情况的题怎样处理呢?题1 设函数已知函数f(x)=ax+sinx+cosx(a∈R),  相似文献   

12.
廖东明 《高中生》2015,(12):26-28
一、选择题1.已知集合M={(x,y)|y=f(x)},若对于任意的(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=1/x};②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=ex-2}.其中是“垂直对点集”的序号是A.①②B.②③C.①④D.②④2.对于任意的x,|x|表示不超过x的最大整数,如[1.1]=1,[-2.1]=-3.定义在R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1),则A中所有元素的和为  相似文献   

13.
<正>文[1]介绍了抛物线内接三角形的一个结论及其应用.本文在此基础上得到抛物线特殊内接三角形的一个结论,并运用此结论速解相关中考题.一、结论延伸如图1,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a>0)与x轴交于点A(x1,0),B(x2,0),其中x12.若点M为x轴下方抛物线上一动点,连结AM,BM,则tan∠MAB+tan∠MBA为定值.  相似文献   

14.
题目(见2010年山东卷(理)22题)已知函数f(x)=1nx-ax+(1-a)/x-1,g(x)=x2-2bx+4,当a=1/4时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b的取值范围.  相似文献   

15.
<正>由不等式恒成立求参数的取值范围问题是导数部分常见的题型,也是高考中的热点问题.对于问题:关于x的不等式f(x)≥0(x∈D,参数a∈P)恒成立,求a的取值范围.有时可以在集合D中取一个特殊的值x0,将其代入不等式得f(x0)≥0,由此解得a的取值范围为集合A.显然当a∈?PA时, f(x0)<0,不符题意,因此,如果能够证明当a∈A时不等式f(x)≥0恒成立,那么集合A就是所求的a取值范围,我们称这种解题方法为“特值法”.  相似文献   

16.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,则有x1+x2=-b/a,x1·x2=c/a.这就是一元二次方程根与系数的关系(又叫韦达定理).在运用根与系数的关系解决问题时,常常要运用一些技巧,现举例说明.  相似文献   

17.
从近几年全国高考新课程试卷来看 ,利用导数的相关知识来分析和解决问题已成为高考命题的一个热点 .以下举例说明导数法的基本应用 .一、研究函数的单调区间【例 1】  ( 2 0 0 3年高考新课程卷 )设a>0 ,求函数f(x) =x-ln(x +a) (x∈ ( 0 ,+∞ ) )的单调区间 .分析 :f′(x) =12x-1x+a(x >0 ) ,当a >0 ,x>0时 ,f′(x) >0 x2 + ( 2a-4 )x +a2 >0f′(x) <0 x2 + ( 2a -4 )x+a2 <0( 1 )当a >1时 ,对所有x>0都有f′(x)>0 ,此时f(x)在 ( 0 ,+∞ )上单调递增 .( 2 )当a =1时 ,对x≠ 1 ,有f′(x) >0 ,f(x)在 ( 0 ,1 )内单调递增 ,在 ( 1 ,+∞ )内…  相似文献   

18.
<正>1经过抛物线上两点的直线方程及其证明经过抛物线y2=2px上两点G(x1,y1),H(x2,y2)的直线方程为2px-(y1+y2)y+y1y2=0.由此知,经过抛物线上两点的直线方程是用这两点的纵坐标的和与积来表示的,结构对称优美.下面给出两种证法.证法1:设点法当直线GH与x轴垂直时,  相似文献   

19.
单调性是函数重要的性质,判断函数单调性应看函数的图象.从左向右,若图象上升,则函数递增;若图象下降,则函数递减.用定义证明函数单调性的方法是作差比较法,要在证明的区间内设任意x10;(2)a<0.(此题为高中课本习题)分析:投石问路,取a=1时,函数y=x3的图象如右图,观察图象知,在R内x增大y增大.猜测当a>0时,函数y=ax3在R上是增函数.(1)证法1:设任意-∞相似文献   

20.
知识点一:两个重要结论结论1:如果二次函数f(x)=ax2+bx+c在闭区间[m,n]上满足f(m)f(n)<0,那么方程f(x)=0在开区间(m,n)上有唯一解,即存在x1∈(m,n),使得f(x1)=0,方程f(x)=0的另一解x2∈(-∞,m)∪(n,+∞)。结论2:如果函数f(x)在区间[m,n]上的图像是连续不断的一条曲线,且满足f(m)f(n)<0,那么方程f(x)=0在开区间(m,n)上至少有一个解。注意点:结论1适用于二次函数,结论2适用于一般函数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号