首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
“如果一个三角形的三条边长分别为a、b、c,且有a2 b2=c2,那么这个三角形是直角三角形.”这就是勾股定理的逆定理.它是初中几何中极其重要的一个定理,有着广泛的应用.下面举例说明.一、用于判断三角形的形状例1如图1,△ABC中,BC=a=2n 1,AC=b=2n2 2n,AB=c=2n2 2n 1.求证:△ABC是直角三角形.证明:由已知得:c>a,c>b,即c是最长边.∵a2 b2=(2n 1)2 (2n2 2n)2=(2n 1)2 4n4 8n3 4n2=(2n 1)2 2×2n2(2n 1) (2n2)2=(2n2 2n 1)2=c2,∴△ABC是直角三角形.二、用于求角度例2如图2,点P是等边△ABC内一点,且PA=3K,PB=4K,PC=5K,求∠APB的度数.…  相似文献   

2.
如果一个三角形的三边长满足两边的平方和等于第三边的平方.那么这个三角形是直角三角形.这就是勾股定理的逆定理.它在数学中的应用非常广泛.下面举例说明勾股定理的逆定理在解题中的应用.  相似文献   

3.
“如果一个三角形的三条边长分别为a、b、c,且有a^2+b^2=c^2,那么这个三角形是直角三角形.”这就是勾股定量的逆定理.它是初中几何中极其重要的一个定理,有着广泛的应用.下面举例说明.  相似文献   

4.
“如果三角形的三边长a、b、c有关系a2+b2=c2那么这个三角形是直角三角形”.此命题称为勾股定理的逆定理.透彻、完整、准确理解上述定理可从如下几个方面:  相似文献   

5.
勾股定理及其逆定理是初中几何中的两个重要定理,应用极其广泛,如何选用它们呢?  相似文献   

6.
勾股定理及其逆定理的应用十分广泛,为提高综合应用能力,现举例解析如下:  相似文献   

7.
勾股定理的逆定理:如何三角形的三边长α,b,c满足关系α^2 b^2=c^2,那么这个三角形是直角三角形。这个定理在平面几何中占有非常重要的地位,现举例说明其应用。  相似文献   

8.
勾股定理是初中几何的一个重要定理,它主要是用于求直角三角形的边长;而其逆定理则是用于判定一个三角形中的某一个角是直角.由此看来,勾股定理与其逆定理在应用上有着很大的不同,然而却有不少的几何问题必须应用两者“联手”来解决,现略举几例说明.  相似文献   

9.
10.
教学目标 (1)掌握勾股定理的逆定理,会用它判定一个三角形是否是直角三角形;  相似文献   

11.
勾股定理及其逆定理揭示了直角三角形中的三边数量关系。是平面几何中极为重要的定理,有着十分广泛的应用,其主要应用体现在:  相似文献   

12.
勾股定理的逆定理在几何问题中的应用十分广泛.在中考中,出现了不少考查我们应变能力的新题型.一、网格中的直角三角形的判定  相似文献   

13.
(数学问题337)先介绍广义勾股定理:CD是直角三角形ABC斜边上的高,设la,lb和lc、分别是三个相似三角形CBD,ACD和ABC中的对应的线元素,则成立等式la^2+lb^2=lc^2,证明略.下面探讨它的逆定理.  相似文献   

14.
在比较复杂的几何图形中,如果要判断一个角是直角,往往要应用勾股定理的逆定理,分析三角形三边的关系.  相似文献   

15.
<正>勾股定理的逆定理是:"如果一个三角形的三边长分别为a、b、c,且a2+b2=c2,那么这个三角形是直角三角形。"它是一个非常重要的定理,有着广泛的应用,现简要归纳如下。一、用于判断三角形的形状例1古埃及人用下面的方法得到直角三角形:把一根长绳打上等距离的13个结(12段),然后把它钉成一个三角形(如图  相似文献   

16.
勾股定理及其逆定理是平面几何中极为重要的定理,其应用十分广泛,为帮助同学们提高综合运用勾股定理及其逆定理解决问题的能力,现举例说明。  相似文献   

17.
勾股定理及其逆定理是直角三角形的重要性质和判定依据,有关这部分内容的中考题型十分丰富。现以近年来各地中考试题为例,淡一下勾股定理及其逆定理的应用。  相似文献   

18.
大多数教材对勾股定理的证明和应用安排得很丰富,而对勾股定理的逆定理的证明和活动安排得较少,重视不够.教材中关于勾股定理的逆定理的证明方法多数采用了"同一证法",学生对此证法陌生.而"过一点作某直线的垂线"这一常见的辅助线没有得到应有的重视.对勾股定理的逆定理的教学进行深度的反思具有实际意义.  相似文献   

19.
勾股定理的逆定理的证明在教材中很少提及,文章给出了一种勾股定理逆定理的证明方法,通过该方法可以开拓学生证明定理的思路。  相似文献   

20.
数学思想是解决数学问题的金钥匙.如果能正确掌握和运用数学思想,有意识地把它与解决数学问题相结合,将会使数学学习更加高效.在运用勾股定理及其逆定理解决数学问题的过程中,数学思想亦起着关键的指导作用,有着广泛的应用.现举例如  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号