首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

2.
本文给出文[1]问题的简解.题目设实数a,b,c,d∈[-2,2],且a+b+c+d=0,求z=a^3+b^3+c^3+d^3的最大值.解法1:z=(a+b)((a+b)^2-3ab)+(c+d)((c+d)^2-3cd)=(a+b)^3+(c+d)^3-3((a+b)ab+(c+d)cd)=-3((a+b)ab-(a+b)cd)=-3(a+b)(ab-cd)=-3(a+b)(ab+c(a+b+c))=-3(a+b)(b+c)(c+a).不妨设a+b=min{a+b,b+c,c+a}.  相似文献   

3.
一个不等式的再推广   总被引:1,自引:0,他引:1  
问题 :已知 a,b,c∈ R~+,则 a/(b + c)+ b/(a + c)+ c/(a + b)≥ 3/2文 [1 ]将其推广为 :设△ ABC的三边为 a,b,c,若 -1 <λ<1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥3λ + 2 ( 1 )本文将 ( 1 )式推广为 :命题 1 已知 a,b,c∈ R+,若 -2 <λ≤1时 ,aλa + b + c+ bλb + a + c+ cλc+ a + b≥ 3λ + 2 ( 2 )若λ=1时 ,( 2 )式显然成立 ,若λ∈ ( -2 ,1 )时 ,令x =λa + b + cy =λb + a + cz =λc+ a + b a =( y + z) - (λ+ 1 ) x( 1 -λ) (λ + 2 )b =( x + z) - (λ + 1 ) y( 1 -λ) (λ + 2 )c=( x + y) - (λ+ 1 ) z( 1 -λ)…  相似文献   

4.
在证明等比性质时 ,巧妙地运用了设 k方法 ,收到了出奇制胜的效果 .设 k法的实质是借用 k为参数 ,建立已知与未知之间的联系 ,达到解题目的 .现列举实例 ,介绍 .一、用设 k法求值例 1  ( 1999年天津市初二数学竞赛试题 )已知a + b - cc =a - b + cb =- a + b + ca ,求( a + b) ( b + c) ( c + a)abc 的值 .解 :设 a + b - cc =a - b + cb =- a + b + ca =k,则 a + b =( k + 1) c, 1a + c=( k + 1) b, 2b + c =( k + 1) a, 3由 1+ 2 + 3,得 ( k - 1) ( a + b + c) =1,∴ k =1或 a + b + c =0 .当 k =1时 ,a + b =2 c,b + c =2 a,c+ a =2 b,…  相似文献   

5.
《中学数学教学》2020年第1期上,“有奖解题擂台(127)”刊有以下问题在锐角△ABC中,求证:1cosA+1cosB+1cosC≥1sinA2sinB2sinC2-2.证法1(扬学枝提供)设△ABC边长为BC=a,CA=b,AB=c,由对称性,不妨设a≥b≥c,则原式等价于∑2bc-a2+b2+c2≥8abc∏(-a+b+c)-2∑(2bc-a2+b2+c2+1)≥8abc∏(-a+b+c)+1∑(a+b+c)(-a+b+c)-a2+b2+c2≥-∑a3+∑a(b+c)2∏(-a+b+c)∑(a+b+c)(-a+b+c)-a2+b2+c2≥∑a(a+b+c)(-a+b+c)∏(-a+b+c)∑-a+b+c-a2+b2+c2≥∑a(a-b+c)(a+b-c),由于∑a(a-b+c)(a+b-c)=12∑(1a-b+c+1a+b-c)=∑1-a+b+c.  相似文献   

6.
本文给出关于三元a、b、c的一个猜想不等式及其部分解决. 猜想 设a、b、c是正实数,m,n是正整数,且m≤n,则am(b+c)n+bm(c+a)n+cm(a+b)n≤2n(a+b+c)m+n/m+n-1.  相似文献   

7.
1989年四川省高中数学联合竞赛第二试题1为: 已知a、b、c、d是任意正数,求证: (a/b+c)+(b/c+d)+(c/d+a)+(d/a+b)≥2。本文首先给出此竞赛题的一种简便证法,然后再将竞赛题进一步加强。证根据柯西不等式有 [a(b+c)+b(c+d)+c(d+a)+d(a+b)] ((a/b+c)+(b/c+d)+(c/d+a)+(d/a+b))≥(a+b+c+d)~2。  相似文献   

8.
文 [1]、[2 ]证明了下面的等式 :设 a,b,c,d∈ (0 ,+∞ ) ,且 c+d=1,c2a+d2b=1a+b,求证 :c4a3 +d4b3 =1(a+b) 3 . 1文 [2 ]还把 1式推广为 :cm + 1am +dm + 1bm =1(a+b) m. 2本文给出 1的不等式证法 ,并把 1,2式的条件推广 ,同时给出其应用 .1 简证 由 x2y≥ 2 x- y知c2aa+b≥ 2 c- aa+b,d2ba+b≥ 2 d- ba+b.因为 c+d=1,所以 c2aa+b+d2ba+b≥ 2 (c+d) - (aa+b+ba+b) =1.由等号成立条件知 c=aa+b,d=ba+b,故 c4a3 +d4b3 =a4a3 (a+b) 4 +b4b3 (a+b) 4 =1(a+b) 3 .2 推广定理 设 a,b,c,d∈ (0 ,+∞ ) ,m,n∈N* ,m≠ n,若 c+d=1且 cm + 1am …  相似文献   

9.
对于某些与条件等式a+b+c=0有关的求值问题,巧用它的移项变形a+b=c,或b+c=-a,或c+a=-b,可找到很好的求值途径. 例1(1995年广州等五市初一数学竞赛试题)已知a+b+c=c,a2+b2+c2=1,那么a(b+c)+b(c+a)+c(a+b)=  相似文献   

10.
Goldner不等式是指:∑a4≥16S2.经过探讨,笔者现给出它的加强式:定理224216(Rr?1)S≤∑a≤16(2Rr2?1)S,其中a,b,c表示△ABC的三边长,P为半周长,S为面积,R为外接圆半径,r为内切圆半径,∑表示循环和.为证明此不等式,先看下面的两个引理:引理1∑a4=2(a2b2+b2c2+c2a2)?16S2.证明由海伦公式得S=p(p?a)(p?b)(p?c)得p(p?a)(p?b)(p?c)=S2.∵p(p?a)(p?b)(p?c)=(a+b+c)(b+c?a)(c+a?b)(a+b?c)/16=[(b+c)+a]?[(b+c)?a]?[a?(b?c)]?[a+(b?c)]/16=[(b+c)2?a2]?[a2?(b?c)2]/16=[2b c+(b2+c2?a2)]?[2bc?(b2+c2?a2)]/16=[4b2c2?(b2+c2?a2)2]/16=(2a2b2+2…  相似文献   

11.
第 6届 IMO第 2题是设 a,b,c是△ ABC的三边长 ,求证a2 (b + c -a) + b2 (c + a -b) + c2 (a +b -c)≤ 3 abc (1)受启发 ,本文得到 (2 )式的如下对偶形式定理 1 设 a,b,c,r是△ ABC的三边长及内切圆半径 ,则有a2 (b + c -a) + b2 (c + a -b) + c2 (a +b -c)≥ 12 r(a + b + c) (2 )证明 :记 p =12 (a + b + c) ,R为△ ABC的外接圆半径 ,S为△ ABC的面积 ,由海伦公式 S = p (p -a) (p -b) (p -c) =rpabc =4RS =4Rrp得左边 =2 a2 (p -a) + 2 b2 (p -b) +2 c2 (p -c)≥2× 3 3 a2 b2 c2 (p -a) (p -b) (p -c) =63 16R2 r2 p2 .r2 p =…  相似文献   

12.
在文[1]中,陆爱梅老师提出一组四个猜想不等式: 猜想1 已知a,b,c是满足abc=1的正数,证明:a2/a3+2+b2/b3+2+c2/c3+2≤1/3(a+b+c); 猜想2 已知a,b,c是满足a+b+c=1的正数,证明:a2/b+c2+b2/c+a2+c2/a+b2>3/4; 猜想3 已知a,b,c是满足a+b+c=3的非负实数,证明:a+b/a+1+b+c/b+1+c+a/c+1≥3; 猜想4 已知a,b,c是两两不同的实数,证明:(a-b/a-c)2+(b-c/b-a)2+(c-a/c-b)2≥a2+c2/a2+b2+b2+a2/b2+c2+c2+b2/c2+a2.  相似文献   

13.
<正> 一、巧加“1”例1 已知a>0>b>c,a+b+c=1,M=(b+c)/a,N-(c+a)/b,P=(a+b)/c,则M、N、P之间的大小关系是( ) (A)M>N>P (B)N>P>M (C)P>M>N (D))M>P>N解∵a+b+c=1∴M+1=(a+b+c)/a-1/a  相似文献   

14.
文[1]中作者给出并证明了Nesbitt不等式的加强式,同时介绍了其运用,本文给出Nesbitt不等式加强式的一个等价形式,在此基础上建立几个新颖的不等式.Nesbitt不等式设a、b、c是正实数,则有a b+c+b c+a+c a+b≥32(1).文[1]将(1)式加强为:设a、b、c是正实数,则有a b+c+b c+a+c a+b≥32+a-b 2+b-c 2+c-a 2 a+b+c 2(2).这里给出(2)的等价变形形式,在此基础上建立几个有趣的不等式.  相似文献   

15.
在各类考试中经常出现条件为a+b+c=0的问题.本文分类举例,说明如何灵活应用条件a+b+c=0,使问题得到解决.一、若a+b+c=0,则有a+b=-c;b+c=-a;c+a=-b例1(1998年全国初中生数学竞赛题)已知:abc≠0,并且a+bc=b+ca=c+ab=p,那么直线y=px+p一定过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限解(1)若a+b+c=0,则a+b=-c.∴p=a+bc=-1,此时直线方程为y=-x-1,经过二、三象限.(2)若a+b+c≠0,由等比性质可得:(a+b)+(b+c)+(c+a)c+a+b=p,∴p=2.此时直线方程为y=2x+2,经过一、二、三象限.故y=px+q一定经过二、三象限.故选(B).例2(2002年…  相似文献   

16.
本刊1989年第际数学竞赛题中有 设a,b,e任R+,5期刊登第二届友谊杯国则 a 2 .b“.cZ_a+b+e—十一—十一—万二声—.白+CC+口口+口艺不等式可加强为设a,b,c任R+,丝+些兰+‘C+召+c:a+b 一L口日男)竺鉴些十抓‘;荞以‘淤三+告厂〕.事实上,不妨设a)b):>0.作如下变形 a2西+c=厂其二 、口十C~4a一b一c 4(b一e)24(b+c)〕班卫二立二少+ 4(乡一c):4(b+c)=六{(a一宁)’一(勿’〕班些立班+ 4(b一e)z4(b+c)(a一b)(a一c)州兰卫上二 4 ︸‘,l︸+ 一百口.(b一十— 4(bc)2·+c)同理刃一,续有类似表达式,三式相加, C个a“十0有兰+b+C b2‘+口十_丝_ a十b一…  相似文献   

17.
《中学数学教学》2 0 0 2年第 6期有奖解题擂台( 5 8)中 ,杨先义老师提出如下猜想 :设a >0 ,b >0 ,c>0 ,a +b +c=1 ,则1b+c2 +1c +a2 +1a +b2 ≥2 74①ab +c2 +bc +a2 +ca +b2 ≥ 94②本文指出 ,猜想不等式①不成立 ,不等式②成立。在①式中 ,令a =0 6,b=0 3 6,c =0 0 4,得左边 =3 41 9455 1 5 2 8<2 74=右边 ;故不等式①不成立。下面证明不等式②成立 ,并修正①式。运用Cauchy不等式 ,得[a(b +c2 ) +b(c +a2 ) +c(a +b2 ) ]( ab+c2 +bc+a2 +ca +b2 )≥ (a +b +c) 2 =1 ,所以  ab +c2 +bc+a2 +ca +b2 ≥1ab +bc +ca +a2 b +b2 c+c2 a。…  相似文献   

18.
本文推广了如下两个关于对称式的不等式 :x2 yz +y2 zx +z2 xy ≥x2 +y2 +z2   (x ,y ,z∈R ,x≥y≥z >0 ) ,ab(a +b) +bc(b +c) +ca(c +a)≤ 32 (a +b) (b +c) (c +a) ,(a ,b ,c∈R+ )  相似文献   

19.
文[1]给出了如下不等式:设a,b,c,d>0且a+b+c+d=1,则a/1+a+b/1+b+c/1+c+d/1+d<1/1+abcd (1) 文[2]给出了不等式(1)的一个类比 定理 设a,b,c,d>0且a+b+c+d=1,则a2/1+a2+b2/1+b2+c2/1+c2+d2/1+d2<1/1+a2b2c2d2(2) 并提出如下.  相似文献   

20.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号