首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells.  相似文献   

2.
Cell movement is highly sensitive to stimuli from the extracellular matrix and media. Receptors on the plasma membrane in cells can activate signal transduction pathways that change the mechanical behavior of a cell by reorganizing motion-related organelles. Cancer cells change their migration mechanisms in response to different environments more robustly than noncancer cells. Therefore, therapeutic approaches to immobilize cancer cells via inhibition of the related signal transduction pathways rely on a better understanding of cell migration mechanisms. In recent years, engineers have been working with biologists to apply microfluidics technology to study cell migration. As opposed to conventional cultures on dishes, microfluidics deals with the manipulation of fluids that are geometrically constrained to a submillimeter scale. Such small scales offer a number of advantages including cost effectiveness, low consumption of reagents, high sensitivity, high spatiotemporal resolution, and laminar flow. Therefore, microfluidics has a potential as a new platform to study cell migration. In this review, we summarized recent progress on the application of microfluidics in cancer and other cell migration researches. These studies have enhanced our understanding of cell migration and cancer invasion as well as their responses to subtle variations in their microenvironment. We hope that this review will serve as an interdisciplinary guidance for both biologists and engineers as they further develop the microfluidic toolbox toward applications in cancer research.  相似文献   

3.
Yang H  Qiao X  Bhattacharyya MK  Dong L 《Biomicrofluidics》2011,5(4):44103-4410311
Highly motile Phytophthora sojae (P. sojae) zoospores of an oomycete plant pathogen and antioomycete candidate chemicals were encapsulated into microdroplets. Random fast self-motion of P. sojae zoospores was overcome by choosing an appropriate flow rate for a zoospore suspension. To influence stochastic loading of zoospores into a microfluidic channel, a zoospore suspension was directly preloaded into a microtubing with a largely reduced inner diameter. A relatively high single zoospore encapsulation rate of 60.5% was achieved on a most trivial T-junction droplet generator platform, without involving any specially designed channel geometry. We speculated that spatial reduction in the diameter direction of microtubing added a degree of zoospore ordering in the longitudinal direction of microtubing and thus influenced positively to change the inherent limitation of stochastic encapsulation of zoospores. Comparative phenotypic study of a plant oomycete pathogen at a single zoospore level had not been achieved earlier. Phenotypic changes of zoospores responding to various chemical concentration conditions were measured in multiple droplets in parallel, providing a reliable data set and thus an improved statistic at a low chemical consumption. Since each droplet compartment contained a single zoospore, we were able to track the germinating history of individual zoospores without being interfered by other germinating zoospores, achieving a high spatial resolution. By adapting some existing droplet immobilization and concentration gradient generation techniques, the droplet approach could potentially lead to a medium-to-high throughput, reliable screening assay for chemicals against many other highly motile zoospores of pathogens.  相似文献   

4.
Understanding biomolecular gradients and their role in biological processes is essential for fully comprehending the underlying mechanisms of cells in living tissue. Conventional in vitro gradient-generating methods are unpredictable and difficult to characterize, owing to temporal and spatial fluctuations. The field of microfluidics enables complex user-defined gradients to be generated based on a detailed understanding of fluidic behavior at the μm-scale. By using microfluidic gradients created by flow, it is possible to develop rapid and dynamic stepwise concentration gradients. However, cells exposed to stepwise gradients can be perturbed by signals from neighboring cells exposed to another concentration. Hence, there is a need for a device that generates a stepwise gradient at discrete and isolated locations. Here, we present a microfluidic device for generating a stepwise concentration gradient, which utilizes a microwell slide''s pre-defined compartmentalized structure to physically separate different reagent concentrations. The gradient was generated due to flow resistance in the microchannel configuration of the device, which was designed using hydraulic analogy and theoretically verified by computational fluidic dynamics simulations. The device had two reagent channels and two dilutant channels, leading to eight chambers, each containing 4 microwells. A dose-dependency assay was performed using bovine aortic endothelial cells treated with saponin. High reproducibility between experiments was confirmed by evaluating the number of living cells in a live-dead assay. Our device generates a fully mixed fluid profile using a simple microchannel configuration and could be used in various gradient studies, e.g., screening for cytostatics or antibiotics.  相似文献   

5.
Microfluidics approaches have gained popularity in the field of directed cell migration, enabling control of the extracellular environment and integration with live-cell microscopy; however, technical hurdles remain. Among the challenges are the stability and predictability of the environment, which are especially critical for the observation of fibroblasts and other slow-moving cells. Such experiments require several hours and are typically plagued by the introduction of bubbles and other disturbances that naturally arise in standard microfluidics protocols. Here, we report on the development of a passive pumping strategy, driven by the high capillary pressure and evaporative capacity of paper, and its application to study fibroblast chemotaxis. The paper pumps—flowvers (flow + clover)—are inexpensive, compact, and scalable, and they allow nearly bubble-free operation, with a predictable volumetric flow rate on the order of μl/min, for several hours. To demonstrate the utility of this approach, we combined the flowver pumping strategy with a Y-junction microfluidic device to generate a chemoattractant gradient landscape that is both stable (6+ h) and predictable (by finite-element modeling calculations). Integrated with fluorescence microscopy, we were able to recapitulate previous, live-cell imaging studies of fibroblast chemotaxis to platelet derived growth factor (PDGF), with an order-of-magnitude gain in throughput. The increased throughput of single-cell analysis allowed us to more precisely define PDGF gradient conditions conducive for chemotaxis; we were also able to interpret how the orientation of signaling through the phosphoinositide 3-kinase pathway affects the cells’ sensing of and response to conducive gradients.  相似文献   

6.
In single cell analysis (SCA), individual cell-specific properties and inhomogeneous cellular responses are being investigated that is not subjected to ensemble-averaging or heterogeneous cell population effects. For proteomic single cell analysis, ultra-sensitive and reproducible separation and detection techniques are essential. Microfluidic devices combined with UV laser induced fluorescence (UV-LIF) detection have been proposed to fulfill these requirements. Here, we report on a novel microfluidic chip fabrication procedure that combines straightforward production of polydimethylsiloxane (PDMS) chips with a reduced UV fluorescence background (83%-reduction) by using PDMS droplets with carbon black pigments (CBP) as additives. The CBP-droplet is placed at the point of detection, whereas the rest of the chip remains transparent, ensuring full optical control of the chip. We systematically studied the relation of the UV background fluorescence at CBP to PDMS ratios (varying from 1:10 to 1:1000) for different UV laser powers. Using a CBP/PDMS ratio of 1:20, detection of a 100 nM tryptophan solution (S/N = 3.5) was possible, providing a theoretical limit of detection of 86 nM (with S/N = 3). Via simultaneous two color UV/VIS-LIF detection, we were able to demonstrate the electrophoretic separation of an analyte mixture of 500 nM tryptophan (UV) and 5 nM fluorescein (VIS) within 30 s. As an application, two color LIF detection was also used for the electrophoretic separation of the protein content from a GFP-labeled single Spodoptera frugiperda (Sf9) insect cell. Thereby just one single peak could be measured in the visible spectral range that could be correlated with one single peak among others in the ultraviolet spectra. This indicates an identification of the labeled protein γ-PKC and envisions a further feasible identification of more than one single protein in the future.  相似文献   

7.
Microfluidics has become increasingly important for the study of biochemical cues because it enables exquisite spatiotemporal control of the microenvironment. Well-characterized, stable, and reproducible generation of biochemical gradients is critical for understanding the complex behaviors involved in many biological phenomena. Although many microfluidic devices have been developed which achieve these criteria, the ongoing challenge for these platforms is to provide a suitably benign and physiologically relevant environment for cell culture in a user-friendly format. To achieve this paradigm, microfluidic designs must consider the full scope of cell culture from substrate preparation, cell seeding, and long-term maintenance to properly observe gradient sensing behavior. In addition, designs must address the challenges associated with altered culture conditions and shear forces in flow-based devices. With this consideration, we have designed and characterized a microfluidic device based on the principle of stacked flows to achieve highly stable gradients of diffusible molecules over large areas with extremely low shear forces. The device utilizes a benign vacuum sealing strategy for reversible application to pre-established cell cultures. We apply this device to an existing culture of breast cancer cells to demonstrate the negligible effect of its shear flow on migratory behavior. Lastly, we extend the stacked-flow design to demonstrate its scalable architecture with a prototype device for generating an array of combinatorial gradients.  相似文献   

8.
Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.  相似文献   

9.
We employed direct-current electric fields (dcEFs) to modulate the chemotaxis of lung cancer cells in a microfluidic cell culture device that incorporates both stable concentration gradients and dcEFs. We found that the chemotaxis induced by a 0.5 μM/mm concentration gradient of epidermal growth factor can be nearly compensated by a 360 mV/mm dcEF. When the effect of chemical stimulation was balanced by the electrical drive, the cells migrated randomly, and the path lengths were largely reduced. We also demonstrated electrically modulated chemotaxis of two types of lung cancer cells with opposite directions of electrotaxis in this device.  相似文献   

10.
Microfluidic devices allow for precise control of the cellular and noncellular microenvironment at physiologically relevant length- and time-scales. These devices have been shown to mimic the complex in vivo microenvironment better than conventional in vitro assays, and allow real-time monitoring of homotypic or heterotypic cellular interactions. Microfluidic culture platforms enable new assay designs for culturing multiple different cell populations and∕or tissue specimens under controlled user-defined conditions. Applications include fundamental studies of cell population behaviors, high-throughput drug screening, and tissue engineering. In this review, we summarize recent developments in this field along with studies of heterotypic cell-cell interactions and tissue specimen culture in microfluidic devices from our own laboratory.  相似文献   

11.
In this paper, we develop a microfluidic device capable of generating nitric oxide (NO) gradients for cell culture using spatially controlled chemical reactions. NO plays an essential role in various biological activities, including nervous, immune, and cardiovascular systems. The device developed in this paper can control NO gradients without utilizing expensive and hazardous high purity NO gas sources or direct addition of NO donors. Consequently, the device provides an efficient, cost-effective, robust, and stable platform to generate NO gradients for cell culture studies. In the experiments, NO gradients are first characterized using a NO-sensitive fluorescence dye, and cell experiments using aortic smooth muscle cells are conducted. The results demonstrate that the device can alter the intracellular NO concentrations and further affect the Ca2+ concentration oscillation for the cells. The device developed in this paper provides a powerful platform for researchers better study the biological roles of NO and its spatial distribution using in vitro cell models with minimal instrumentation.  相似文献   

12.
Cell migration is an essential process involved in the development and maintenance of multicellular organisms. Electric fields (EFs) are one of the many physical and chemical factors known to affect cell migration, a phenomenon termed electrotaxis or galvanotaxis. In this paper, a microfluidics chip was developed to study the migration of cells under different electrical and chemical stimuli. This chip is capable of providing four different strengths of EFs in combination with two different chemicals via one simple set of agar salt bridges and Ag/AgCl electrodes. NIH 3T3 fibroblasts were seeded inside this chip to study their migration and reactive oxygen species (ROS) production in response to different EF strengths and the presence of β-lapachone. We found that both the EF and β-lapachone level increased the cell migration rate and the production of ROS in an EF-strength-dependent manner. A strong linear correlation between the cell migration rate and the amount of intracellular ROS suggests that ROS are an intermediate product by which EF and β-lapachone enhance cell migration. Moreover, an anti-oxidant, α-tocopherol, was found to quench the production of ROS, resulting in a decrease in the migration rate.  相似文献   

13.
In this paper, we report the design, fabrication, and testing of a lab-on-a-chip based microfluidic device for application of trapping and measuring the dielectric properties of microtumors over time using electrical impedance spectroscopy (EIS). Microelectromechanical system (MEMS) techniques were used to embed opposing electrodes onto the top and bottom surfaces of a microfluidic channel fabricated using Pyrex substrate, chrome gold, SU-8, and polydimethylsiloxane. Differing concentrations of cell culture medium, differing sized polystyrene beads, and MCF-7 microtumor spheroids were used to validate the designs ability to detect background conductivity changes and dielectric particle diameter changes between electrodes. The observed changes in cell medium concentrations demonstrated a linear relation to extracted solution resistance (Rs), while polystyrene beads and multicell spheroids induced changes in magnitude consistent with diameter increase. This design permits optical correlation between electrical measurements and EIS spectra.  相似文献   

14.
Studies on the effects of variations in temperature and mild temperature gradients on cells, gels, and scaffolds are important from the viewpoint of biological function. Small differences in temperature are known to elicit significant variations in cell behavior and individual protein reactivity. For the study of thermal effects and gradients in vitro, it is important to develop microfluidic platforms which are capable of controlling temperature gradients in an environment which mimics the range of physiological conditions. In the present paper, such a microfluidic thermal gradient system (μTGS) system is proposed which can create and maintain a thermal gradient throughout a cell-seeded gel matrix using the hot and cold water supply integrated in the system in the form of a countercurrent heat exchanger. It is found that a uniform temperature gradient can be created and maintained in the device even inside a high temperature and high humidity environment of an incubator. With the help of a hot and cold circuit controlled from outside the incubator the temperature gradient can be regulated. A numerical simulation of the device demonstrates the thermal feature of the chip. Cell viability and activity under a thermal gradient are examined by placing human breast cancer cells in the device.  相似文献   

15.
16.
Aptamers are promising cell targeting ligands for several applications such as for the diagnosis, therapy, and drug delivery. Especially, in the field of regenerative medicine, stem cell specific aptamers have an enormous potential. Using the combinatorial chemistry process SELEX (Systematic Evolution of Ligands by Exponential enrichment), aptamers are selected from a huge oligonucleotide library consisting of approximately 1015 different oligonucleotides. Here, we developed a microfluidic chip system that can be used for the selection of cell specific aptamers. The major drawbacks of common cell-SELEX methods are the inefficient elimination of the unspecifically bound oligonucleotides from the cell surface and the unspecific binding/uptake of oligonucleotides by dead cells. To overcome these obstacles, a microfluidic device, which enables the simultaneous performance of dielectrophoresis and electrophoresis in the same device, was designed. Using this system, viable cells can be selectively assembled by dielectrophoresis between the electrodes and then incubated with the oligonucleotides. To reduce the rate of unspecifically bound sequences, electrophoretic fields can be applied in order to draw loosely bound oligonucleotides away from the cells. Furthermore, by increasing the flow rate in the chip during the iterative rounds of SELEX, the selection pressure can be improved and aptamers with higher affinities and specificities can be obtained. This new microfluidic device has a tremendous capability to improve the cell-SELEX procedure and to select highly specific aptamers.  相似文献   

17.
This paper presents a microfluidic device for simultaneous mechanical and electrical characterization of single cells. The device performs two types of cellular characterization (impedance spectroscopy and micropipette aspiration) on a single chip to enable cell electrical and mechanical characterization. To investigate the performance of the device design, electrical and mechanical properties of MC-3T3 osteoblast cells were measured. Based on electrical models, membrane capacitance of MC-3T3 cells was determined to be 3.39±1.23 and 2.99±0.82 pF at the aspiration pressure of 50 and 100 Pa, respectively. Cytoplasm resistance values were 110.1±37.7 kΩ (50 Pa) and 145.2±44.3 kΩ (100 Pa). Aspiration length of cells was found to be 0.813±0.351 μm at 50 Pa and 1.771±0.623 μm at 100 Pa. Quantified Young's modulus values were 377±189 Pa at 50 Pa and 344±156 Pa at 100 Pa. Experimental results demonstrate the device's capability for characterizing both electrical and mechanical properties of single cells.  相似文献   

18.
Microfluidic devices have been established as useful platforms for cell culture for a broad range of applications, but challenges associated with controlling gradients of oxygen and other soluble factors and hemodynamic shear forces in small, confined channels have emerged. For instance, simple microfluidic constructs comprising a single cell culture compartment in a dynamic flow condition must handle tradeoffs between sustaining oxygen delivery and limiting hemodynamic shear forces imparted to the cells. These tradeoffs present significant difficulties in the culture of mesenchymal stem cells (MSCs), where shear is known to regulate signaling, proliferation, and expression. Several approaches designed to shield cells in microfluidic devices from excessive shear while maintaining sufficient oxygen concentrations and transport have been reported. Here we present the relationship between oxygen transport and shear in a "membrane bilayer" microfluidic device, in which soluble factors are delivered to a cell population by means of flow through a proximate channel separated from the culture channel by a membrane. We present an analytical model that describes the characteristics of this device and its ability to independently modulate oxygen delivery and hemodynamic shear imparted to the cultured cells. This bilayer configuration provides a more uniform oxygen concentration profile that is possible in a single-channel system, and it enables independent tuning of oxygen transport and shear parameters to meet requirements for MSCs and other cells known to be sensitive to hemodynamic shear stresses.  相似文献   

19.
Lee K  Kim C  Young Yang J  Lee H  Ahn B  Xu L  Yoon Kang J  Oh KW 《Biomicrofluidics》2012,6(1):14114-141147
We propose a simple method for forming massive and uniform three-dimensional (3-D) cell spheroids in a multi-level structured microfluidic device by gravitational force. The concept of orienting the device vertically has allowed spheroid formation, long-term perfusion, and retrieval of the cultured spheroids by user-friendly standard pipetting. We have successfully formed, perfused, and retrieved uniform, size-controllable, well-conditioned spheroids of human embryonic kidney 293 cells (HEK 293) in the gravity-oriented microfluidic device. We expect the proposed method will be a useful tool to study in-vitro 3-D cell models for the proliferation, differentiation, and metabolism of embryoid bodies or tumours.  相似文献   

20.
Zhang X  Gao X  Jiang L  Zhang X  Qin J 《Biomicrofluidics》2011,5(3):32007-3200710
Cell-microscale pattern surface interactions are crucial to understand many fundamental biological questions and develop regenerative medicine and tissue engineering approaches. In this work, we demonstrated a simple method to pattern PDMS surface by sacrificing poly vinyl pyrrolidone (PVP) electrospinning nanofibers and investigated the growth profile of cells on the modified patterned surfaces using stroma cells. The stromal cells were observed to exhibit good viability on this modified surface and the patterned surface with alignment nanofibers could promote cell migration. Furthermore, the modified PDMS surface was integrated with microfluidic channels to create the microscale spatial factor and was used to explore the cell migration and orientation under this microsystem. Both spatial factor and patterned surfaces were found to contribute to the complex cell orientation under the combined dual effects. This established method is simple, fast, and easy for use, demonstrating the potential of this microsystem for applications in addressing biological questions in complex environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号