首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一元积分学是积分学的基础。主要有:概念(原函数、不定积分与定积分)、计算方法和应用(几何与物理的)三部分内容。 一、不定积分 在(a,b)上定义的函数f(x),存在F(x),满足F′(x)=f(x)或dF(x)=f(x)dx F(x)就是f(x)的一个原函数。对任意常数C,表达式  相似文献   

2.
如果函数F(x)是函数f(x)的一个原函数,则函数f(x)的全体原函数F(x)+C称为函数f(x)的不定积分,记作∫f(x)dx,即∫f(d)dx=F(x)+C 对于不定积分的定义,必须注意被积函数的定义区间,这一问题从原函数的定义中可以清楚地看到。原函数一般是这样定义的: 设f(x)是定义在某一区间(a,b)上的一个已知函数,如果存在一个函数F(x),对于该区间(a,b)上每一点都满足F′(x)=f(x),或dF(x)=f(x)dx,则称F(x)是f(x)在该区间(a,b)上的一个原函数。由此可知,原函数的定义要求:(1)函数f(x)与函数F(x)要定义在同一区  相似文献   

3.
文章利用两个基本的定积分恒等式∫ba f(x)dx=∫ba f(a+b-x)dx和∫ba f(x)dx=∫(a+b)/2a[f(x)+f(a+b-x)]dx=∫b(a+b)/2[f(x)+f(a+b-x)]dx,变形后得到其对应的两个重要推论。利用上述几个积分恒等式,从中心对称和轴对称的角度将其推广,用以解决一系列二重积分和三重积分的问题,并由此给出利用"中心对称、轴对称"简化积分计算的一般方法。稍作修改后,该方法也可用来解决关于曲线积分、曲面积分的一系列问题,对于具有对称区域的各种积分问题也都具有一定的适用性。  相似文献   

4.
在实际中,经常会碰到这样的问题:对于给足的有限区间〔α,b〕上的连续函数f(χ)需要计算定积分∫b/af(x)dx的值。利用牛顿——莱不尼慈公式:∫b/af(x)dx=F(b)-F(a) 仅仅能解决被积函数f(x)的原函数F(x)以初等函数的形式存在且容易求出的问题。但是,在大量的实际问题中,有许多被讨论的被积函数f(x)的原函数不能用初等函数的闭合形式表示,  相似文献   

5.
积分法是微分法的逆运算,但掌握积分法却比微分法困难得多。在积分中,只有少数几类特殊函数的积分(即有理函数积分,三角函数有理式积分及简单无理函数积分)有积分途径可循,而大多数积分要靠灵活运用积分性质,解析式的恒等变形以及换元法和分部法,将所求积分逐步化为熟悉的积分。可见换元法和分部法乃是积分法的重点,而换元和分部的关键则是“凑微分”。对换元法来说,就是将被积表达式g(x)dx中除一个复合函数因子f(φ(x))外的剩余部分φ'(x)dx凑成中间变量φ(x)的微分dφ(x),即:g(x)dx=f(φ(x))φ'(x)dx=f…  相似文献   

6.
1定积分的换元公式若函数f(x)在区间[a,b]上连续,函数x=(?)(t)在区间[α,β]上有连续导数(?)′(t),当t在[α,β]上的变化时,函数x=(?)(t)的值在[a,b]上变化,并且(?)(a)=a,(?)(β)= b,则(?)f(x)dx=(?)[(?)(t)](?)(t)dt,上式称为定积分的换元公式(证明略).  相似文献   

7.
将Newton—Leibniz公式进行推广,使其既可用于计算区间[a,b]上连续函数f(x)的定积分∫_a~bf(x)dx,也可用于f(x)在[a,b]上有有限个间断点(可以是区间端点,也可以是内部的点,包括无穷间断点)的情形。  相似文献   

8.
在定积分中,有这样一条性质 定理 若函数f(x)在区间[a,b]上可积,且任取x∈[a,b],有f(x)≥0,则 integral from n=a to bf(x)dx≥0 它称为定积分的单调性。 该性质的条件中f(x)≥0可能有以下情况发生1°x∈[a,b],f(x)=0;2°Ex∈[a,b]使f(x)=0,同时Ex∈[a,b]使f(x)>0;3°x∈[a,b],f(x)>0。  相似文献   

9.
考点四 积分1 .积分的性质( 1 ) ∫[f ( x)± g( x) ]dx =∫f( x) dx±∫g( x) dx(定积分与不定积分有相同性质 )( 2 ) ∫kf ( x) dx =k∫f( x) dx(定积分与不定积分有相同性质 )( 3) ( ∫f ( x) dx)′=f ( x)( 4 ) ∫f′( x) dx =f ( x) + c( 5 ) ∫aaf ( x) dx =0( 6) ∫baf ( x) =- ∫abf ( x) dx( 7)若 a 相似文献   

10.
一、将平面图形分割成若干个曲边梯形 (1)在区间[a,b]内,当f(x)≥0(或f(x)〈0)时,定积分∫a^bf(x)dx的几何意义是由直线x=a,x=b,y=0及曲线y=f(x)所围成的曲边梯形的面积(或面积的相反数)即S=∫a^bf(x)出(如图1)或S=-∫a^bf(x)dx(如图2).  相似文献   

11.
以前用不定积分∫f(x)dx表示全体的原函数F(x) C.从而把C看作任意常数或变元,比较新近的说法用∫f(x)dx表示原函数族.从而∫f(x)dx不再是一数而是函数集,这些说法都有其本身的问题,难以服人。本把∫f(x)dx出写成∫^xf(x)dx(分清现行变元与积分变元),用它表示一个确定的(但尚未具体指定的)原函数,C为待定常数。  相似文献   

12.
<正>定积分的单调性是定积分的重要性质,文[1]对定积分的单调性[1]中称为积分不等式定理)作了一些补充和说明,这对初学数学分析的学生有一定的指导作用,但笔者认为文[1]的某些说法欠妥,本文对[1]的一些问题提出不同的看法,并给出了定积分单调性定理的一般形式.为叙述方便起见,把定积分的单调性定理叙述如下:定理A([2],275页)设f(x)与g(x)在[a,b]可积,若f(x)≥g(x),则integral from a to b f(x)dx≥integral from a to b g(x)dx.运用定理A,教材[2]以例题的形式证明了如下结论  相似文献   

13.
微分中值定理的用途很广,本文借助微分中值定理,从定积分定义出发,找出定积分与不定积分的内在联系,由所得结果得出定积分的计算方法。 1、定积分的定义 若函数f(x)在区间〔a,b〕上连续,用点:a=x_0相似文献   

14.
用定积分解决实际问题,关键在于如何把实际问题化为教学问题。微元法是实现这一转化的工具。本文结合定积分应用实例,谈谈微元法在定积分问题中的应用。 当实际问题要求量Q,但Q不能用初等方法得到,这时量Q由定积分来确定。Q依赖于区间的[a,b]上的X为积分变量,[a,b]为积分区间,且Q在区间[a,b]上具有可加性,即把区间[a,b]分为n个子区间,要求的量Q是对应n个子区间上的部  相似文献   

15.
我们知道,不定积分总是与某个区间联系在一起的.对〔a,b〕上的函数f(x),f(x)的不定积分是f(x)在〔a,b〕上的原函数的一般形式,即∫f(x)dx=F(x)+C,Ax∈〔a,b〕.  相似文献   

16.
<正> “分部积分”是积分学中的重要内容之一,它是用来解决两个函数乘积的积分的方法。目前在国内现行的大部分教材中关于“分部积分”这部分内容的讲授都是从两个函数乘积的导数(或微分)公式中引入,然后利用微分与积分互为逆运算的性质,得到分部积分的计算公式: integral from (u(x)v′(x)dx )=u(x)·v(x)-integral from (v(x)u′(x)dx ) (1) 当计算积分integral from (u(x)v′(x)dx )感到困难,而计算积分integral from (v(x)u′(x)dx )又比较容易时,  相似文献   

17.
我们知道,对于对称区间[-a,a]上的定积分Ⅰ=integral form n=(-a) to a(f(x)dx),若f(x)为奇函数,则I=0;若f(x)为偶函数,则I=2 integral form n=0 to a(f(x)dx),这个结论对于某些定积分的计算是比较方便的。 关于坐标轴或坐标面对称区域上的重积分有与上面类似的性质,它对某些重积分的计算,也是方便的。这些性质是: 定理一 对于I=,若D关于y轴对称,记对称的两部分区域为  相似文献   

18.
求导数和求不定积分是微积分学中的两种基本运算。求导数的方法有一定之规,有固定章法可循,而求不定积分的方法却灵活多变。下面略述不定积分的一些可循的章法。一、不定积分的计算规则1.基本规则dF(x)=f(x)dx(?)(?)f(x)dx=F(x)+C  相似文献   

19.
黎曼(Riemann)引理是人们较为熟知的一个命题,本文拟将该命题给予推广,推广后的命题,应用于解决一些特型的定积分的极限问题非常便利。 1°Riemann引理及推广命题 Riemann引理 设函数f(x)在[a,b]上可积并绝对可积,则 (?)integral from n=a to b(f(x)sin(nx)dx)=0。 推广命题1 设函数f(x)在[a,b]上可积并绝对可积,则 (?)integral from n=a to b(f(x)sin~2(nx)dx)=1/2integral from n=a go b(f(x)dx),  相似文献   

20.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号