首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 713 毫秒
1.
【题】 :过双曲线x2 - y22 =1的右焦点作直线l交双曲线于A、B两点 ,若|AB|=4 ,则这样的直线共有 (   ) .A .1条    B .2条C .3条  D .4条正确答案是C .对该题进一步的探讨分析发现 ,此双曲线的实半轴a =1,虚半轴b =2 ,过焦点与x轴垂直的弦长为2b2a =4 ,|AB|=2b2a =4 >2a =2 .试问 :|AB|无论多长答案是否都是C呢 ?请看 :设双曲线 x2a2 - y2b2 =1(c =a2 b2 )的右焦点为F ,过F作直线l交双曲线于A、B两点 ,|AB|=d ,试根据d的不同取值讨论l的存在性 .预备知识 :(1)两顶点间的距离是双曲线两支上的两点间距离的最小值 ;(2 )过双…  相似文献   

2.
2004年全国高考文(理)解几试题是:设椭圆x2/m 1 y2=1的两个焦点是F1(-c,0)与F2(c,0),(c>0),且椭圆上存在点P,使直线PF1与直线PF2垂直,(1)求实数m的取值范围;(2)设l是相应于焦点F2的准线,直线PF2与l相交于点Q,若|OF2|/|PF2|=2-3~(1/2),求直线PF2的方程.本题解法较多,这里仅给出其中一种解法.解(1)∵PFl1⊥PF2,∴点P在以线段F1F2的圆上,且半径为c=m~(1/2),又点P在已知椭圆上,椭圆的短半轴长为b=  相似文献   

3.
文[1]给出了与椭圆、双曲线有关的常考题目的二个实用结论及其证明:结论1设椭圆(双曲线)C的焦点在x轴上,直线l是过焦点的一条直线,A、B是直线l与椭圆(双曲线)C的两个交点,且满足AF=λFB,那么直线l的斜率的平方为k_l~2=((λ+1)/(λ-1))~2e~2-1.  相似文献   

4.
一道流传较广的选择题,给出答案迥异的两种解法,问题出在何处?题已知双曲线的离心率e=2,虚轴长为6,F1、F2分别是它的左、右焦点,若过F1的直线与双曲线左支交于A、B两点,且|AF2|、|AB|、|BF2|成等差数列,则|AB|的值为()(A)6.(B)43~(1/2).(C)63~(1/2).(D)83~(1/2).解法1因为A、B两点在双曲线的左支上,由双曲线的定义,得  相似文献   

5.
1.双曲线x~2/a~2-y~2/b~2=1右支上任一点P,到右焦点F_2的距离与右域内一点C(x_0,y_0)的距离之和为S,则S的最小值为____解:由双曲线的定义,可得: |PC|+|PF_2|=|PC|+|PF_1|-2a≥|F_1C|-2a当且仅当F_1,C,P三点共线时取等号,  相似文献   

6.
<正>引例(2015年全国高考题)已知椭圆C:9x2+y2+y2=m2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A、B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率之积为定值;(2)若l过点(m/3,m)延长线段OM与C交于点P,四边形OAPB能否为平行四边形?  相似文献   

7.
一、利用判别式确定位置关系时导致丢解例1已知双曲线C:x2-y24=1,过点P(1,1)作直线l,使得l与C有且仅有一个公共点,则满足上述条件的直线l共有()(A)1条.(B)2条.(C)3条.(D)4条.错解:设直线l的方程为y-1=k(x-1),即y=kx-k+1,与x2-y24=1联立消去y,得(4-k2)x2+(2k2-2k)x-k2+2k-5=0.要直线l与C有且仅有一个公共点,必须△=(2k2-2k)2-4(4-k2)(-k2+2k-5)=0.解得k=52.故满足条件的直线l只有一条,选(A).评析:以上解法有三个问题,一是双曲线与直线只有一个交点,除了利用△=0得出相切的一条外,还有与渐近线平行的直线也与双曲线只有一个交点;二是利用…  相似文献   

8.
正圆锥曲线中有很多迷人的结论,本文给出圆锥曲线中一个基本模型中蕴含的优美结论.定理1:已知A,B是椭圆x2/a2+y2/b2=1(ab0)的左右顶点,点Q是直线l:x=x0(x0≠0,且|x0|≠a)上任意一点,直线AQ与椭圆的另一个交点为C,直线BQ与椭圆的另一个交点为D,直线AD与直线l的交点为R,则  相似文献   

9.
1.问题提出直线l过点P(2,1),且分别交x轴、y轴的正半轴于点A,B,O为坐标原点.当|PA|·|PB|取最小值时,求直线l的方程.方法 1由题意可知,直线斜率存在且k<0,设l:y-1=k(x-2)(k<0),则A(2-1k,0),B(0,1-2k),∴|PA|·  相似文献   

10.
直线与圆是解析几何知识的基础,也是近几年高考的热点内容,因此,熟悉、掌握一些直线与圆综合问题十分必要. 例1已知圆C与圆C1:x2+y2-2x—=0外切,并且与直线l:x+ 3~(1/2)y=0相切与点P(3,-3~(1/2)).求此圆C的方程. 求圆C的方程要先确定圆心的坐标和半径的长.可设圆C的圆心为C(a,b),半径为r,因为圆C与圆C1相外切,且圆C1的半径为1,所以两圆的圆心距|CC1|=r+1.又因为与直线l相切与点P,所以圆C的圆心在过P点与直线l垂直的直线上,且圆心到直线l的距离等于半径r,依据圆的几何性质即可求出参数a,b、r 解:设所求圆的圆心为C(a,b),半径为r.  相似文献   

11.
题目 设双曲线C:(x2)/(a2)-y2=1(a>0)与直线l:x y=1相交于两个不同的点A、B. (Ⅰ)求双曲线C的离心率e的取值范围; (Ⅱ)设直线l与y轴的交点为P,且PA=(5)/(12)PB,求a的值.  相似文献   

12.
<正>一、问题提出题目:已知曲线C的极坐标方程是ρ=2cosθ+4sinθ,P点的极坐标为3,(π/2),以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy,在平面直角坐标系中,直线l经过点P,倾斜角为π/3。(Ⅰ)写出曲线C的直角坐标方程和直线l的参数方程。(Ⅱ)设直线l与曲线C相交于A,B两点,求AB的长。问题:求直线与圆锥曲线的交点弦的弦长时,为什么在直线方程是参数方程的情况下要用参数方程中的弦长公式AB=  相似文献   

13.
一试题概述2004年高考数学全国卷(之一)理科第21题和文科第22题是相同的"解析几何试题",并且依然是融入平面向量知识的:设双曲线C:x~2/a~2-y~2=1(a>0)与直线l:x+y=1相交于两个不同的点A、B.(Ⅰ)求双曲线C的离心率e的取值范围;(Ⅱ)设直线l与y轴的交点为P,且,求  相似文献   

14.
文 [1]~ [4 ]给出了与圆锥曲线有关的一些不等式 ,本文再给出与双曲线有关的一个不等式 ,然后介绍它的应用 .定理 设F是双曲线的一个焦点 ,l是过焦点F且垂直实轴的直线 ,A1、A2 是双曲线与实轴的两个交点 ,P∈l,∠A1PA2 =α ,e是双曲线的离心率 ,则α为锐角 ,且sinα≤ 1e.当且仅当点P到双曲线实轴的距离是双曲线虚半轴长时取等号 .证明 不妨设双曲线方程为 x2a2 - y2b2 =1,F(c,0 )为右焦点 ,P位于x轴上方 ,如图 1所示 .易知过点F垂直于x轴的直线l的方程为x =c,从而可设点P的坐标为 (c ,y) (y>0 ) .又知A1(-a ,0 ) ,A2 (a ,0 ) ,由…  相似文献   

15.
人教版高中《数学》第二册(上)P114第6题“:证明双曲线的一个焦点到一条渐近线的距离等于虚半轴长”,联想c2=a2 b2,我们便得双曲线的一个重要性质:双曲线的中心O、焦点F、以及对应准线与渐近线的交点M构成一个直角三角形OMF.且OM=a,MF=b,OF=c.如图所示,准线x=ac2与渐近线y=ab x的交点为M(ac2,acb).由两点间的距离公式计算得OM=a,MF=b.因此△OMF是Rt△,其中FM⊥OM.下面就性质的应用,给出几例供参考.例1双曲线xa22-y42=1的焦点到渐近线的距离等于2.例2已知双曲线实轴长为2$2,一焦点是F(2,0),且以直线l:x-y=0为一渐近线,求此双曲线…  相似文献   

16.
一、试题探究2008年安徽省高考试题理科第22题为:设椭圆C:x~2/a~2+y~2/b~2=1(a>b>0)过点M(2~(1/2),1),且左焦点为F_1(-2~(1/2),0).(1)求椭圆C的方程;(2)当过点P(4,1)的动直线l与椭圆C相  相似文献   

17.
例直线l:y=-1/2x 2与椭圆(x2)/(a2) (y2)/(b2)=1交于A、B两点,O为坐标原点,M为线段AB的中点.若|AB|=5~(1/2),直线OM的斜率为1/2,求椭圆的方程.  相似文献   

18.
我们经常会遇到这样的习题: 1.直线l过定点P(1,2 2),且与x、y轴正半轴分别交于A、B两点,试求|PA| | PB |的最小值. 2.P(1,2 2)为椭圆x2/a2 y2/b2=1(a,b>0)上一点,试求a b的最小值.  相似文献   

19.
案例展示笔者在一堂高三的试卷讲评课中,讲到这样一道填空题:已知圆C:x2+y2-6x-4y+10=0,直线l1:y=mx,直线l2:3x+2y+10=0,且l1截圆C所得弦的中点是P,l1,l2的交点是Q,A为原点,求|AP|·|AQ|的值.  相似文献   

20.
<正>一、问题呈现已知双曲线C的渐近线方程为■,且过点P(3,■).(1)求曲线C的方程;(2)设点Q(1,0),直线x=t(t∈R)不经过点P且与C相交于A,B两点,若直线BQ与C交于另一点D,求证:直线AD过定点(如图1).二、解法探究第(1)问易知答案为x2-3y2=3.第(2)问的求解条件之一是过定点Q(1,0)的直线QB与双曲线相交,涉及到联立方程组的计算和韦达定理的应用;条件之二是涉及到其中一个交点B的对称点A与另一个交点D的连线问题,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号