首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The purpose of this study was to determine the influence of lumbar spine extension and erector spinae muscle activation on vertical jump height during maximal squat jumping. Eight male athletes performed maximal squat jumps. Electromyograms of the erector spinae were recorded during these jumps. A simulation model of the musculoskeletal system was used to simulate maximal squat jumping with and without spine extension. The effect on vertical jump height of changing erector spinae strength was also tested through the simulated jumps. Concerning the participant jumps, the kinematics indicated a spine extension and erector spinae activation. Concerning the simulated jumps, vertical jump height was about 5.4 cm lower during squat jump without trunk extension compared to squat jump. These results were explained by greater total muscle work during squat jump, more especially by the erector spinae work (+119.5 J). The erector spinae may contribute to spine extension during maximal squat jumping. The simulated jumps confirmed this hypothesis showing that vertical jumping was decreased if this muscle was not taken into consideration in the model. Therefore it is concluded that the erector spinae should be considered as a trunk extensor, which enables to enhance total muscle work and consequently vertical jump height.  相似文献   

2.
Abstract

An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

3.
An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

4.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad · s -1 and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5 - 7.1 years (mean - s ). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets 2 10 repetitions at 70% body mass load). Strength was reduced for 4 days ( P ? 0.05) but no significant differences ( P > 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6 - 1.1% vs 95.2 - 1.3% of pre-exercise values, P ? 0.05) and drop jump (95.2 - 1.4%, P ? 0.05) performance. Creatine kinase was elevated ( P ? 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

5.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad x s(-1) and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5+/-7.1 years (mean +/- s). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets x 10 repetitions at 70% body mass load). Strength was reduced for 4 days (P< 0.05) but no significant differences (P> 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6+/-1.1% vs 95.2+/-1.3% of pre-exercise values, P< 0.05) and drop jump (95.2+/-1.4%, P< 0.05) performance. Creatine kinase was elevated (P < 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

6.
ABSTRACT

The present study aimed to provide reference values for lower-limb muscle power assessed during the incremental jump squat (JS) test in elite athletes (i.e., professional athletes competing at international level). We pooled data from all JS tests performed by elite athletes of different sports in two high-performance centres between 2015 and 2019, and computed reference values (i.e., terciles) for mean power (MP), mean propulsive power (MPP), and peak power (PP). Reference values were obtained from 684 elite athletes (458 male and 226 female) of 16 different sports (boxing, judo, karate, fencing, taekwondo, wrestling, basketball, soccer, futsal, handball, rugby union, badminton, tennis, long distance running, triathlon, and sprinting). Significant differences (p < 0.001) were found between male and female athletes for MP (7.47 ± 1.93 and 6.15 ± 1.68 W·Kg?1, respectively), MPP (10.50 ± 2.75 and 8.63 ± 2.43 W·Kg?1), and PP (23.64 ± 6.12 and 19.35 ± 5.49 W·Kg?1). However, the velocity at which these power measures was attained seemed to be independent of sex (~0.95, 1.00 and 2.00 m·s?1 for mean, mean propulsive, and peak velocity, respectively) and homogeneous across different sport disciplines (coefficient of variation <10%). These data can be used to classify athletes’ power capabilities, and the optimum velocity ranges provided here could be useful for training purposes.  相似文献   

7.
The aim of this study was to determine the effects of external loading on power output during a squat jump on a force platform in athletes specializing in strength and power events (6 elite weight-lifters and 16 volleyball players) and in 20 sedentary individuals. Instantaneous power was computed from time-force curves during vertical jumps with and without an external load (0, 5 or 10 kg worn in a special vest). The jumps were performed from a squat position, without lower limb counter-movement or an arm swing. Peak instantaneous power corresponded to the highest value of instantaneous power during jumping. Average power throughout the push phase of the jump was also calculated. A two-way analysis of variance showed significant interactions between the load and group effects for peak instantaneous power (P< 0.01) and average power (P< 0.001). Peak instantaneous power decreased significantly in sedentary individuals when moderate external loads were added. The peak instantaneous power at 0 kg was greater than that at 5 and 10 kg in the sedentary individuals. In contrast, peak instantaneous power was independent of load in the strength and power athletes. Mean power at 0 kg was significantly lower than at 5 kg in the athletes; at 0 kg it was significantly higher than at 10 kg in the sedentary males and at 5 and 10 kg in the sedentary females. In all groups, the force corresponding to peak instantaneous power increased and the velocity corresponding to peak instantaneous power decreased with external loading. The present results suggest that the effects of external loading on peak instantaneous power are not significant in strength and power athletes provided that the loads do not prevent peak velocity from being higher than the velocity that is optimal for maximal power output.  相似文献   

8.
9.
The aim of this study was to determine the effects of external loading on power output during a squat jump on a force platform in athletes specializing in strength and power events (6 elite weight-lifters and 16 volleyball players) and in 20 sedentary individuals. Instantaneous power was computed from time-force curves during vertical jumps with and without an external load (0, 5 or 10 kg worn in a special vest). The jumps were performed from a squat position, without lower limb counter-movement or an arm swing. Peak instantaneous power corresponded to the highest value of instantaneous power during jumping. Average power throughout the push phase of the jump was also calculated. A two‐way analysis of variance showed significant interactions between the load and group effects for peak instantaneous power ( P < 0.01) and average power ( P < 0.001). Peak instantaneous power decreased significantly in sedentary individuals when moderate external loads were added. The peak instantaneous power at 0 kg was greater than that at 5 and 10 kg in the sedentary individuals. In contrast, peak instantaneous power was independent of load in the strength and power athletes. Mean power at 0 kg was significantly lower than at 5 kg in the athletes; at 0 kg it was significantly higher than at 10 kg in the sedentary males and at 5 and 10 kg in the sedentary females. In all groups, the force corresponding to peak instantaneous power increased and the velocity corresponding to peak instantaneous power decreased with external loading. The present results suggest that the effects of external loading on peak instantaneous power are not significant in strength and power athletes provided that the loads do not prevent peak velocity from being higher than the velocity that is optimal for maximal power output.  相似文献   

10.
不同的空中姿态对摸高成绩的影响   总被引:1,自引:0,他引:1  
用一维重心板对两名体育系大学生进行了四种不同姿态重心位置的测试,结合人体重心上抛运动规律,对不同空中姿态下的摸高成绩影响幅度进行了测算,结果表明,空中姿态对摸高成绩有影响;摸高成绩以直腿单手上举为最高,而以屈双腿双手上举为最底,两的差值在30cm左右。姿态对摸高的影响幅度占摸高成绩的10%左右:在影响幅度上,下肢姿态比上肢更重要;男子与女子间表现出无明显的差异。  相似文献   

11.
ABSTRACT

The aims of the present study were to provide an in-depth comparison of inter-limb asymmetry and determine how consistently asymmetry favours the same limb during different vertical jump tests. Eighteen elite female under-17 soccer players conducted unilateral squat jumps (SJ), countermovement jumps (CMJ) and drop jumps (DJ) on a portable force platform, with jump height, peak force, concentric impulse and peak power as common metrics across tests. For the magnitude of asymmetry, concentric impulse was significantly greater during the SJ test compared to CMJ (p = 0.019) and DJ (p = 0.003). No other significant differences in magnitude were present. For the direction of asymmetry, Kappa coefficients revealed fair to substantial levels of agreement between the SJ and CMJ (Kappa = 0.35 to 0.61) tests, but only slight to fair levels of agreement between the SJ and DJ (Kappa = ?0.26 to 0.18) and CMJ and DJ (Kappa = ?0.13 to 0.26) tests. These results highlight that the mean asymmetry value may be a poor indicator of true variability of between-limb differences in healthy athletes. The direction of asymmetry may provide a useful monitoring tool for practitioners in healthy athletes, when no obvious between-limb deficit exists.  相似文献   

12.
The aim of this study was to identify how changes in the stability conditions of a back squat affect maximal loads lifted and erector spinae muscle activity. Fourteen male participants performed a Smith Machine (SM) squat, the most stable condition, a barbell back (BB) squat, and Tendo-destabilizing bar (TBB) squat, the least stable condition. A one repetition max (1-RM) was established in each squat condition, before electromyography (EMG) activity of the erector spinae was measured at 85% of 1-RM. Results indicated that the SM squat 1-RM load was significantly (p = 0.006) greater (10.9%) than the BB squat, but not greater than the TBB squat. EMG results indicated significantly greater (p < 0.05) muscle activation in the TBB condition compared to other conditions. The BB squat produced significantly greater (p = 0.036) EMG activity compared to the SM squat. A greater stability challenge applied to the torso seems to increase muscle activation. The maximum loads lifted in the most stable and unstable squats were similar. However, the lift with greater stability challenge required greatest muscle activation. The implications of this study may be important for training programmes; if coaches wish to challenge trunk stability, while their athletes lift maximal loads designed to increase strength.  相似文献   

13.
This 9-month randomised controlled workplace physical activity trial investigated the effects of soccer and Zumba exercise, respectively, on muscle strength, maximal jump height, sit-and-reach flexibility and postural sway among female workers. A total of 107 female hospital employees aged 25–63 were cluster-randomised to a soccer group, a Zumba group or a control group. Training was conducted outside working hours as two to three 1-h weekly sessions the first 3 months and once a week the last 6 months. Tests were conducted at baseline, after 3 and 9 months. The soccer group improved maximal neck extension strength both after 3 (1.2 kg; P < 0.05) and 9 months (1.7 kg; P < 0.01) compared to the control group. The Zumba group improved maximal trunk extension strength (3.1 kg; P = 0.04) after 3 months, with improvements in postural sway velocity moment (?9.2 mm2/s; P < 0.05) and lower limb lean mass (0.4 kg; P < 0.05) after 9 months. No significant intervention effects were revealed in vertical jump height or sit-and-reach flexibility. The present study indicates that workplace-initiated soccer and Zumba exercise may be beneficial for improvement of the neck and trunk strength, which may have preventive effects with regard to future perceived muscle pain in the respective body regions. Furthermore, the Zumba group revealed positive effects on lower limb lean mass and postural sway compared to the control group.  相似文献   

14.
运用摄像解析及等动肌肉力量测试的方法,对天津蹦床队6名健将级蹦床运动员的网上空跳高度、无任何上肢运动的空跳高度及肩关节肌群力量进行了测试和分析,旨在研究蹦床运动员肩关节力量与网上跳跃高度之间的关系。研究结果表明:蹦床网上运动员在起跳的过程中手臂由上举的状态快速落下到生理解剖位的动作是有利于运动员增加跳跃高度的;排除下肢力量与网性的情况下,蹦床网上运动员肩关节力量与网上跳跃高度存在正相关关系。  相似文献   

15.
16.
目的:研究补充FDP补充对骨骼肌力量耐力的影响,为其在运动训练中的应用提供理论依据。方法:16只昆明种雄性成年小鼠,随机分为对照组和FDP组,FDP组每日以3%的FDP溶液0.2ml/10g灌胃,对照组以等体积纯净水灌胃,连续7天。7天后以5%乌拉坦1g/kg经腹腔注射麻醉、固定,利用BL-410生物机能实验系统测定肌肉力量和力量耐力。结果:对照组小鼠骨骼肌最大肌力于5min时显著下降(P〈0.05),FDP组小鼠最大肌力显著下降出现在30min(P〈0.05);各时点肌力下降幅值FDP组显著低于对照组(P〈0.05)。结论:FDP通过改善肌细胞无氧代谢而显著延迟骨骼肌肌力的下降,较长时间维持骨骼肌的收缩张力,有效改善骨骼肌力量耐力。  相似文献   

17.
18.
BackgroundThis prospective study explored the effects of endurance running (ER) in minimal versus standard running shoes on the foot's superficial layer intrinsic muscles and the function of the longitudinal arch. Our hypothesis was that running in minimal shoes would cause hypertrophy in these muscles and lead to higher, stronger, stiffer arches.MethodsThe hypothesis was tested using a sample of 33 healthy runners randomized into two groups, a control group shod in traditional running footwear and an experimental group shod in minimal support footwear, whose feet were scanned in an MRI before and after a 12-week training regime. Running kinematics as well as arch stiffness and height were also assessed before and after the treatment period.ResultsAnalysis of anatomical cross-sectional areas and muscle volumes indicate that the flexor digitorum brevis muscle became larger in both groups by 11% and 21%, respectively, but only the minimally shod runners had significant areal and volumetric increases of the abductor digiti minimi of 18% and 22%, respectively, and significantly increased longitudinal arch stiffness (60%).ConclusionThese results suggest that endurance running in minimal support footwear with 4 mm offset or less makes greater use of the spring-like function of the longitudinal arch, thus leading to greater demands on the intrinsic muscles that support the arch, thereby strengthening the foot.  相似文献   

19.
Anterior cruciate ligament (ACL) injuries commonly occur during jump-landing tasks when individuals’ attention is simultaneously allocated to other objects and tasks. The purpose of the current study was to investigate the effect of allocation of attention imposed by a secondary cognitive task on landing mechanics and jump performance. Thirty-eight recreational athletes performed a jump-landing task in three conditions: no counting, counting backward by 1 s from a randomly given number, and counting backward by 7 s from a randomly given number. Three-dimensional kinematics and ground reaction forces were collected and analysed. Participants demonstrated decreased knee flexion angles at initial contact (p = 0.001) for the counting by 1 s condition compared with the no counting condition. Participants also showed increased peak posterior and vertical ground reaction forces during the first 100 ms of landing (p ≤ 0.023) and decreased jump height (p < 0.001) for the counting by 1 s and counting by 7 s conditions compared with the no counting condition. Imposition of a simultaneous cognitive challenge resulted in landing mechanics associated with increased ACL loading and decreased jump performance. ACL injury risk screening protocols and injury prevention programmes may incorporate cognitive tasks into jump-landing tasks to better simulate sports environments.  相似文献   

20.
负荷时间长短对纵跳能力影响的动力学研究   总被引:3,自引:1,他引:2  
分析受试者在功率自行车上不同运动负荷时间后纵跳的动力学特征变化规律 ,研究结论 :①大强度持续运动约 3min左右 ,纵跳的爆发力、平均功率、平均力值等动力学指标显著上升 ;运动 5min后 ,上述指标的变化情况正好相反 ;②只有在适宜的运动负荷时间后 ,纵跳的动力学特征才进入有利于运动能力发挥的较好的组合状态  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号