首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The purpose of this study was to examine the application of anatomy and neuroanatomy knowledge to current practice of speech‐language pathology (SLP), based on the perceptions of practicing SLPs, and to elicit information on participants' experiences of learning these subjects in their primary SLP degree with a view to inform potential curriculum development. A qualitative approach was taken to the collection of data. Eight practicing SLPs from four settings were interviewed. The critical incident technique, together with further probing, was used to elicit information. Interviews were transcribed and later thematically analyzed. This study found that knowledge of anatomy and neuroanatomy was perceived to be important by SLPs across all settings, to varying degrees, with a greater application in acute hospital settings. Negative experiences in studying this material were reported across all settings regardless of country of study. Participants discussed ways to increase students' motivation to learn this challenging material. Relevance of material demanded by students may be enhanced if active learning methods were used to teach anatomy/neuroanatomy, including case‐based learning and with vertical and horizontal integration of material to provide a cohesive, spiral curriculum. Anat Sci Educ. 7: 28–37. © 2013 American Association of Anatomists.  相似文献   

2.
The inherent spatial complexity of the human cerebral ventricular system, coupled with its deep position within the brain, poses a problem for conceptualizing its anatomy. Cadaveric dissection, while considered the gold standard of anatomical learning, may be inadequate for learning the anatomy of the cerebral ventricular system; even with intricate dissection, ventricular structures remain difficult to observe. Three-dimensional (3D) computer reconstruction of the ventricular system offers a solution to this problem. This study aims to create an accurate 3D computer reconstruction of the ventricular system with surrounding structures, including the brain and cerebellum, using commercially available 3D rendering software. Magnetic resonance imaging (MRI) scans of a male cadaver were segmented using both semiautomatic and manual tools. Segmentation involves separating voxels of different grayscale values to highlight specific neural structures. User controls enable adding or removing of structures, altering their opacity, and making cross-sectional slices through the model to highlight inner structures. Complex physiologic concepts, such as the flow of cerebrospinal fluid, are also shown using the 3D model of the ventricular system through a video animation. The model can be projected stereoscopically, to increase depth perception and to emphasize spatial relationships between anatomical structures. This model is suited for both self-directed learning and classroom teaching of the 3D anatomical structure and spatial orientation of the ventricles, their connections, and their relation to adjacent neural and skeletal structures.  相似文献   

3.
Both in mainland China and around the world, regional anatomy stands as one of the most important basic science courses in medical school curricula. As such, dissection of human cadavers and use of prosected specimens remains the most essential teaching method in anatomy education. However, medical educators have raised increasing concerns about an ongoing shortage of cadavers for medical use in mainland China, a problem which may seriously limit the future development of human anatomy education. Based on a survey on cadaver usage in anatomy education in mainland China, this study found that the cadaver resources of most given medical schools in mainland China are associated with their geographic location, academic ranking, and local support for body donation policies. Effective measures to alleviate this shortage of cadavers may include future efforts to promote national‐level body donation legislation, broader acceptance of body donation among Chinese citizens, and an efficient and humane protocol for body donation. Anat Sci Educ 11: 397–402. © 2018 American Association of Anatomists.  相似文献   

4.
Team‐based learning (TBL) is an instructional strategy that combines independent out‐of‐class preparation for in‐class discussion in small groups. This approach has been successfully adopted by a number of medical educators. This strategy allowed us to eliminate anatomy lectures and incorporate small‐group active learning. Although our strategy is a modified use of classical TBL, in the text, we use the standard terminology of TBL for simplicity. We have modified classical TBL to fit our curricular needs and approach. Anatomy lectures were replaced with TBL activities that required pre‐class reading of assigned materials, an individual self‐assessment quiz, discussion of learning issues derived from the reading assignments, and then the group retaking the same quiz for discussion and deeper learning. Students' performances and their educational experiences in the TBL format were compared with the traditional lecture approach. We offer several in‐house unit exams and a final comprehensive subject exam provided by the National Board of Medical Examiners. The students performed better in all exams following the TBL approach compared to traditional lecture‐based teaching. Students acknowledged that TBL encouraged them to study regularly, allowed them to actively teach and learn from peers, and this served to improve their own exam performances. We found that a TBL approach in teaching anatomy allowed us to create an active learning environment that helped to improve students' performances. Based on our experience, other preclinical courses are now piloting TBL. Anat Sci Ed 1:3–9, 2008. © 2007 American Association of Anatomists.  相似文献   

5.
Publications on anatomy in medical education appear to be largely anecdotal. To explore this, we investigated the literature on anatomy in medical education, aiming first to evaluate the contribution of the literature on anatomy in medical education to best evidence medical education (BEME) and second to evaluate the development of this literature toward more best evidence between 1985 and 2009. Four databases were searched for publications on anatomy in medical education published between 1985 and 2009, resulting in 525 references. Hundred publications were characterized by five variables (journal category, paper subject, paper category, author perspective, and paper perspective). Statements from these publications were characterized by two variables (category and foundation). The publications contained 797 statements that involved the words anatomy, anatomical, or anatomist. Forty-five percent of the publications contained no explicit research question. Forty percent of the statements made were about teaching methods and 17% about teaching content, 8% referred to practical value, and 10% to side effects of anatomy education. Ten percent of the statements were positional, five percent traditional, four percent self-evident, and two percent referred to quality of care. Fifty-six percent of the statements had no foundation, 17% were founded on empirical data, and 27% by references. These results substantiated the critical comments about the anecdotal nature of the literature. However, it is encouraging to see that between 1985 and 2009 the number of publications is rising that these publications increasingly focus on teaching methods and that an academic writing style is developing. This suggests a growing body of empirical literature about anatomy education.  相似文献   

6.
Fewer and fewer programs are training graduate students and postdoctoral fellows in the classical anatomical disciplines. Nonetheless, there remains a need at all levels of clinical and basic science education for skilled instructors of anatomy, histology, and embryology. Two sessions at the 2006 annual meeting of the American Association of Anatomists (AAA) explored whether a system of accreditation would benefit students, institutions, and training programs. Although the value of accreditation was controversial, three challenges for the various anatomical societies emerged from these discussions: (1) To identify the skills and knowledge that should be shared among all anatomists, and the more specific skills and knowledge needed for the diverse settings in which anatomists work. (2) To address the historical inattention of institutions to the training of educators. (3) To develop strategies to lobby institutions and national organizations to support the training and work of educators in the anatomical sciences. One approach to meeting these challenges would be to develop guidelines for training programs. These guidelines would help graduate students seek the training they need, provide institutions with a benchmark to assess or develop training programs, and provide the basis for focusing lobbying efforts targeted at institutions or existing accreditation bodies. Anat Sci Ed 1:60–67, 2008. © 2008 American Association of Anatomists.  相似文献   

7.
    
Augmented, mixed, and virtual reality applications and content have surged into the higher education arena, thereby allowing institutions to engage in research and development projects to better understand their efficacy within curricula. However, despite the increasing interest, there remains a lack of robust empirical evidence to justify the mainstream acceptance of this approach as an effective and efficient learning tool. In this study, the impact of a mixed reality application focused on long spinal cord sensory and motor pathways is explored in comparison to an existing resource already embedded within an active curriculum (e.g., anatomy drawing screencasts). To assess the changes in learner gain, a quasi-randomized control trial with a pre- and post-test methodology was used on a cohort of Year 2 medical students, with both the absolute and normalized gain calculated. Similar patterns of learner gain were observed between the two groups; only the multiple-choice questionnaires were shown to be answered significantly higher with the screencast group. This study adds important empirical data to the emerging field of immersive technologies and the specific impact on short-term knowledge gain for neuroanatomy teaching, specifically that of long sensory and motor pathways. Despite the limitations of the study, it provides important additional data to the field and intends to support colleagues across the education landscape in making evidence-informed decisions about the value of including such resources into their curricula.  相似文献   

8.
    
Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and discussed during integrated second‐year neuroanatomy, neuroradiology, and neurosurgery lectures over the 2008–2011 period. Anonymous questionnaires, evaluated according to the Likert scale, demonstrated that students appreciated this teaching procedure. Academic performance (examination grades for neuroanatomy) of the students who attended all integrated lectures of neuroanatomy, was slightly though significantly higher compared to that of students who attended these lectures only occasionally or not at all (P=0.04). Significantly better results were obtained during the national progress test (focusing on morphology) by students who attended the MRI/DTI‐assisted lectures, compared to those who did so only in part or not at all, compared to the average student participating in the national test. These results were obtained by students attending the second, third and, in particular, the fourth year (P≤0.0001) courses during the three academic years mentioned earlier. This integrated neuroanatomy model can positively direct students in the direction of their future professional careers without any extra expense to the university. In conclusion, interactive learning tools, such as lectures integrated with intraoperative MRI/DTI images, motivate students to study and enhance their neuroanatomy education. Anat Sci Educ 6: 294–306. © 2013 American Association of Anatomists.  相似文献   

9.
Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more precisely than classical cross-sectional images based on a two dimensional (2D) approach. Eighty participants were assigned to each experimental condition: 2D cross-sectional visualization vs. 3D volumetric visualization. Both groups were matched for age, gender, visual-spatial ability, and previous knowledge of neuroanatomy. Accuracy in identifying brain structures, execution time, and level of confidence in the response were taken as outcome measures. Moreover, interactive effects between the experimental conditions (2D vs. 3D) and factors such as level of competence (novice vs. expert), image modality (morphological and functional), and difficulty of the structures were analyzed. The percentage of correct answers (hit rate) and level of confidence in responses were significantly higher in the 3D visualization condition than in the 2D. In addition, the response time was significantly lower for the 3D visualization condition in comparison with the 2D. The interaction between the experimental condition (2D vs. 3D) and difficulty was significant, and the 3D condition facilitated the location of difficult images more than the 2D condition. 3D volumetric visualization helps to identify brain structures such as the hippocampus and amygdala, more accurately and rapidly than conventional 2D visualization. This paper discusses the implications of these results with regards to the learning process involved in neuroimaging interpretation.  相似文献   

10.
    
The synthetic cadaver is a high-fidelity model intended to replace or supplement other anatomy learning modalities. Academic attainment and student perceptions were examined in an undergraduate human anatomy course using a combination of plastic models and synthetic cadavers to learn lower body anatomy (“Experimental group”), compared to a Historical group who used only plastic models. Grades on an upper body test, for which both groups used only plastic models, were compared to ensure that no academic differences existed between groups (P = 0.7653). Students in the Experimental group performed better on the lower body test for which they used both plastic models and synthetic cadavers (median = 73.8% (95% CI: 72.0%-75.0%) compared to the Historical group (70.1% (95% CI: 68.3%-70.7%), P < 0.0001); however, less than half of students (49%) attributed this to the synthetic cadavers. Students' perception of laboratory resources (P < 0.0001) and learning experience (P < 0.0001) both improved with the addition of synthetic cadavers compared to using only plastic models, and 60% of students in the Experimental group agreed that the synthetic cadavers would be a key reason that they would choose that institution for undergraduate studies. This investigation showed improved student grades when plastic models and synthetic cadavers were combined, in addition to improved student perceptions of the learning experience. Results of the student questionnaires also suggested that although synthetic cadavers carry a notable up-front cost, they may be a useful recruitment tool for institutions.  相似文献   

11.
Anatomy students studying dissected anatomical specimens were subjected to either a loosely‐guided, self‐directed learning environment or a strictly‐guided, preformatted gross anatomy laboratory session. The current study's guiding questions were: (1) do strictly‐guided gross anatomy laboratory sessions lead to higher learning gains than loosely‐guided experiences? and (2) are there differences in the recall of anatomical knowledge between students who undergo the two types of laboratory sessions after weeks and months? The design was a randomized controlled trial. The participants were 360 second‐year medical students attending a gross anatomy laboratory course on the anatomy of the hand. Half of the students, the experimental group, were subjected without prior warning to station‐based laboratory sessions; the other half, the control group, to loosely‐guided laboratory sessions, which was the course's prevailing educational method at the time. The recall of anatomical knowledge was measured by written reproduction of 12 anatomical names at four points in time: immediately after the laboratory experience, then one week, five weeks, and eight months later. The strictly‐guided group scored higher than the loosely‐guided group at all time‐points. Repeated ANOVA showed no interaction between the results of the two types of laboratory sessions (P = 0.121) and a significant between‐subject effect (P ≤ 0.001). Therefore, levels of anatomical knowledge retrieved were significantly higher for the strictly‐guided group than for the loosely‐guided group at all times. It was concluded that gross anatomy laboratory sessions with strict instructions resulted in the recall of a larger amount of anatomical knowledge, even after eight months. Anat Sci Educ. © 2012 American Association of Anatomists.  相似文献   

12.
After Phnom Penh was liberated from the Khmer Rouge in 1979, health science education in Cambodia had to be completely rebuilt. In this article, the authors report the results of a teaching collaboration between the University of Melbourne (Australia), the International University (Cambodia), and the University of Health Sciences (Cambodia). The main objectives in this collaboration were to provide the opportunity for dental and medical students in Cambodia to attend resourced anatomy workshops and to provide an opportunity for anatomy teachers in Cambodia to gain experience in implementing anatomy workshops of the style that are routinely used in the medical and dental curricula at the University of Melbourne. Experienced anatomy educators from the Department of Anatomy and Cell Biology, University of Melbourne, designed and resourced a series of workshops and then delivered these in collaboration with Cambodian teaching staff in Phnom Penh. The Cambodian students who participated in the workshops were incredibly engaged and enthusiastic. The students' evaluations (by questionnaire) indicated a very positive response to the workshops. All of the workshop resources were donated to the two universities so that the staff could continue to implement similar workshops, and plans were developed to continue our collaboration by developing more resourced workshops for this purpose in the future. Two staff members from Cambodia will travel to Melbourne to participate in anatomy workshops and dissection classes at the University of Melbourne. We hope that this extension of the collaboration provides further support and impetus for the development of anatomy education in Cambodia in the future.  相似文献   

13.
Described in this article is a novel device that facilitates study of the cross‐sectional anatomy of the human head. In designing our device, we aimed to protect sections of the head from the destructive action of handling during anatomy laboratory while also ensuring excellent visualization of the anatomic structures. We used an electric saw to create 15‐mm sections of three cadaver heads in the three traditional anatomic planes and inserted each section into a thin, perforated display box made of transparent acrylic material. The thin display boxes with head sections are kept in anatomical order in a larger transparent acrylic storage box containing formaldehyde solution, which preserves the specimens but also permits direct observation of the structures and their anatomic relationships to each other. This box‐within‐box design allows students to easily view sections of a head in its anatomical position as well as to examine internal structures by manipulating individual display boxes without altering the integrity of the preparations. This methodology for demonstrating cross‐section anatomy allows efficient use of cadaveric material and technician time while also giving learners the best possible handling and visualization of complex anatomic structures. Our approach to teaching cross‐sectional anatomy of the head can be applied to any part of human body, and the value of our device design will only increase as more complicated understandings of cross‐sectional anatomy are required by advances and proliferation of imaging technology. Anat Sci Educ 2010. © 2010 American Association of Anatomists.  相似文献   

14.
15.
    
Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e‐learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small‐group teaching with medically qualified demonstrators. Other teaching methods, including e‐learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. Anat Sci Educ 7: 262–272. © 2013 American Association of Anatomists.  相似文献   

16.
    
Innovative educational strategies can provide variety and enhance student learning while addressing complex logistical and financial issues facing modern anatomy education. Observe‐Reflect‐Draw‐Edit‐Repeat (ORDER), a novel cyclical artistic process, has been designed based on cognitivist and constructivist learning theories, and on processes of critical observation, reflection and drawing in anatomy learning. ORDER was initially investigated in the context of a compulsory first year surface anatomy practical (ORDER‐SAP) at a United Kingdom medical school in which a cross‐over trial with pre‐post anatomy knowledge testing was utilized and student perceptions were identified. Despite positive perceptions of ORDER‐SAP, medical student (n = 154) pre‐post knowledge test scores were significantly greater (P < 0.001) with standard anatomy learning methods (3.26, SD = ±2.25) than with ORDER‐SAP (2.17, ±2.30). Based on these findings, ORDER was modified and evaluated in the context of an optional self‐directed gross anatomy online interactive tutorial (ORDER‐IT) for participating first year medical students (n = 55). Student performance was significantly greater (P < 0.001) with ORDER‐IT (2.71 ± 2.17) when compared to a control tutorial (1.31 ± 2.03). Performances of students with visual and artistic preferences when using ORDER were not significantly different (P > 0.05) to those students without these characteristics. These findings will be of value to anatomy instructors seeking to engage students from diverse learning backgrounds in a research‐led, innovative, time and cost‐effective learning method, in the context of contrasting learning environments. Anat Sci Educ 10: 7–22. © 2016 American Association of Anatomists.  相似文献   

17.
    
Near‐peer teaching involves more experienced students acting as tutors and has been widely used in anatomy education. This approach has many advantages for the learner due to the social and cognitive congruence they share with the teacher, however, the influence of distance between the teacher and learner on these congruences has yet to be explored. The aim of this study was to compare the attitudes and perceptions of the student learner towards neuroanatomy review sessions taught by either a senior medical student or a junior doctor. The students were randomly assigned to an allocated tutor. All tutors used standardized material and had access to identical resources. The type of allocated tutor was swapped between the two teaching sessions and 99 student feedback forms were collected in total. The rating for the overall quality of the teaching session was not significantly different between the junior doctors and senior medical students (P = 0.11). However, criteria closely relating to social and cognitive congruence such as “enjoyment of the session,” “delivery of the teaching,” and “was it a good use of time” were all rated significantly higher for the senior medical students (P < 0.05). The results of this study suggest that small increases in distance along the near‐peer teaching spectrum have an impact upon the student's perception of their learning experience. While all teachers were suitable role models it appears that junior doctors are too far removed from their own undergraduate experiences to share congruences with pre‐clinical medical students. Anat Sci Educ 7: 242–247. © 2013 American Association of Anatomists.  相似文献   

18.
The drivers for curricular change in medical education such as the addition of innovative approaches to teaching, inclusion of technology and adoption of different assessment methods are gaining momentum. In an effort to understand how these changes are impacting and being implemented in gross anatomy, microscopic anatomy, neuroanatomy/neuroscience, and embryology courses, surveys were sent out to course directors/discipline leaders at allopathic Medical Schools in the United States during the 2016‐2017 academic year. Participants in the study were asked to comment on course hours, student experiences in the classroom and laboratory, amount of faculty participation, the use of peers as teachers in both the classroom and laboratory, methods used for student assessment and identification of best practices. Compared to data published from a similar survey in 2014, a number of changes were identified: (1) classroom hours in gross anatomy increased by 24% and by 29% in neuroanatomy/neuroscience; (2) laboratory hours in gross anatomy decreased by 16%, by 33% in microscopic anatomy, and by 38% in neuroanatomy/neuroscience; (3) use of virtual microscopy in microscopic anatomy teaching increased by 129%; and (4) the number of respondents reporting their discipline as part of a partially or fully integrated curriculum increased by greater than 100% for all four disciplines. Anat Sci Educ 11: 7–14. © 2017 American Association of Anatomists.  相似文献   

19.
Recent studies have highlighted a fear or difficulty with the study and understanding of neuroanatomy among medical and healthcare students. This has been linked with a diminished confidence of clinical practitioners and students to manage patients with neurological conditions. The underlying reasons for this difficulty have been queried among a broad cohort of medical, dental, occupational therapy, and speech and language sciences students. Direct evidence of the students’ perception regarding specific difficulties associated with learning neuroanatomy has been provided and some of the measures required to address these issues have been identified. Neuroanatomy is perceived as a more difficult subject compared to other anatomy topics (e.g., reproductive/pelvic anatomy) and not all components of the neuroanatomy curriculum are viewed as equally challenging. The difficulty in understanding neuroanatomical concepts is linked to intrinsic factors such as the inherent complex nature of the topic rather than outside influences (e.g., lecture duration). Participants reporting high levels of interest in the subject reported higher levels of knowledge, suggesting that teaching tools aimed at increasing interest, such as case‐based scenarios, could facilitate acquisition of knowledge. Newer pedagogies, including web‐resources and computer assisted learning (CAL) are considered important tools to improve neuroanatomy learning, whereas traditional tools such as lecture slides and notes were considered less important. In conclusion, it is suggested that understanding of neuroanatomy could be enhanced and neurophobia be decreased by purposefully designed CAL resources. This data could help curricular designers to refocus attention and guide educators to develop improved neuroanatomy web‐resources in future. Anat Sci Educ 11: 81–93. © 2017 American Association of Anatomists.  相似文献   

20.
    
Curricular changes continue at United States medical schools and directors of gross anatomy, microscopic anatomy, neuroscience/neuroanatomy, and embryology courses continue to adjust and modify their offerings. Developing and supplying data related to current trends in anatomical sciences education is important if informed decisions are going to be made in a time of curricular and course revision. Thus, a survey was sent to course directors during the 2012–2013 academic years to gather information on total course hours, lecture and laboratory hours, the type of laboratory experiences, testing and competency evaluation, and the type of curricular approach used at their institution. The data gathered were compared to information obtained from previous surveys and conclusions reached were that only small or no change was observed in total course, lecture and laboratory hours in all four courses; more gross anatomy courses were part of an integrated curriculum since the previous survey; virtual microscopy with and without microscopes was the primary laboratory activity in microscopic anatomy courses; and neuroscience/neuroanatomy and embryology courses were unchanged. Anat Sci Educ 7: 321–325. © 2014 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号