共查询到20条相似文献,搜索用时 0 毫秒
1.
王卫华 《数学大世界(高中辅导)》2006,(Z2)
在多年的教学中,我发现学生在求解形如f(x)g(x)≥0的不等式中往往会因为一些原因不清楚而得到错误的结论,究其原因不外乎对式子中的等号理解不透,如何处理这类题呢?下面就以一个例子作为说明.题目:解不等式(x-2)x2-4x 3≥0.误解一:原不等式等价于x-2≥0x2-4x 3≥0,化简得:x≥3, 相似文献
2.
一、引例 解不等式:(x-4)√x2-3x-4≥0 在一次练习中,几乎所有的学生都采用了如下解法: 原不等式等价于不等式组 {x-4≥0 {x≥4 x2-3x-4≥0 即 x≥4或x≤-1 故原不等式解集为|x|x≥4} 相似文献
3.
文[1]建立有如下一个几何不等式;设△ABC的三边长为a、b、c,旁切圆半径为r_a、r_b、r_c,则\sum (a/r_a)≥2(2~(1/3))①其中∑表示循环和,下同.本文将①加强为7a>以aR十)一oV4R‘ 4Rr 3r‘其中R、厂分别是否ABC的外接圆和内切国半径.证明 设八**C的面积、半周长分别为A、S,由r.一A/(—a)等.知②等价于 相似文献
4.
5.
设n∈N,则有这是中学数学中一个熟知的不等式,它的一个熟知的用法是推出 相似文献
6.
正确认识与的含义,深刻理解与的相同点与不同点,是我们进行二次根式化简与计算的基础.一、相同点与都表示一个非负数.因为表示a2这个数的算术平方根,所以它是一个非负数,而是一个平方数,所以它也是一个非负数.二、不同点1.运算顺序不同.rp是光算。的平方,后进行开方,而(/z)’是先进行开平方,后进行平方.2.字母a的取值范围不同.由于运算顺序不同,所以。的取值范围也不同,As是先平方后开方,所以a可以取一切实数;由于负数不能开平方,故ffe)‘中apeo.3.化简后的形式不同.In是表示求/2这个数的算术平方根,故As20… 相似文献
7.
注意到a表示非负数a的算术平方根 ,那么a≥ 0 ,对于某些与二次根式有关的问题 ,巧用这一性质 ,可使解题简易 ,下面实例说明。例 1 若a =x +2 ,b =3-x ,化简 (x +3) 2 +(x - 4) 2 .解 :由a≥ 0 ,b≥ 0 ,得x +2≥ 0 ,3-x≥ 0 .∴ - 2≤x≤ 3. ∴x +3>0 ,x - 4<0 .原式 =|x +3|+|x - 4|=(x +3) +(4 -x) =7例 2 如果x3+3x2 =-xx +3,那么x的取值范围是 ( ) .A .x≤ 0 ; B .x≥ - 3; C .0 <x <3; D .- 3≤x≤ 0 .解 :由x3+3x2 ≥ 0 ,得 -xx +3≥ 0 ,∵x +3≥ 0 ,∴ -x≥ 0 ,x≤ 0∵x … 相似文献
8.
二次根式中两个重要公式.不少同学对这两个公式常混为一谈,因而在解题中时常出现这样或那样的错误.其实这两个公式既有联系又有区别.一、两式中字母a的取值范围不同两式中有两个不同的二次根式人和M,因为它们都是算术平方根,所以被开方数都应该是一件负数.即中a≥0,中≥0.由于a2一定是非负数,所以中a可取一切实数.例如:无意义,而则有意足.又如中,只有当x≥3时才有意义,而根式中,x无论取什么数都成立.二、两式的左边表示的意义不同表示算术平方根后再平方,而In表示先平方再算水平方根,因此它们的运算顺序不同.例如:(… 相似文献
9.
(a≥0)和=|a|=是二次根式中的两个重要公式.不少同学常把这两个公式混为一谈,因而在解题中时常出现这样或那样的错误.其实这两个公式既有联系又有区别.一、两式中字母a的取值范围不同两式中有两个不同的二次根式和,因为它们都表示算术平方根,所以被开方数都应该是非负数,即中a≥0,中a≥0.由于a2一定是非负数,所以中a可取一切实数.例如:()2无意义,而则有意义.又如()2.只有当x≥3时才有意义,而根式中,X无论取什么数都成立.二、两式的左边表示的意义不同(/二)。表示。的算术平方根的平方,而I… 相似文献
10.
∠QED,故QD=QE,故AQ+QB=AQ+QE+BE=AQ+BP+QD=AD+BP=AB+BP,即BQ+AQ=AB+BP.思考四:引平行线证法9:过P引PD∥BQ交AB的延长线于D.(以下同证法1)《二次根式》一章内容中有两个重要等式:(1)(a√)2=a(a≥0);(2)a2√=|a|=a(a≥0),-a(a<0) 许多同学由于对(a√)2与a2√认识不清,而出现解题错误.下面我们来讨论(a√)2与a2√的区别、联系,以及应用上述两个等式时需要注意的问题.一、区别1.数学含义不同.(a√)2表示a的算术平方根的平方,是幂的形式;而a… 相似文献
11.
1.字母a的取值范围不同 中 ,即a是非负数。而 中a可取一切实数。例如:等式 成立的前提条件是 ,到,即 。而等式 ,不论x 或 都成立,并且根据绝对值的定义有: 2.运算顺序不同 是先求a的算术平方根,然后再求算术平方根的平方。而 是先求a的平方,再求a2的算术平方根。例: 3.计算结果都是非负数,但又有区别 是二次幂,其结果直挂得到a,即“一个非负数算术平方根的平方,其结果是这个非负数本身”。 是算术平方根,其结果因a>0与巴<0而异,即“任何一个实戮的平方的算术平方根,其结果是卜一H负数。若这个数是正… 相似文献
12.
1 .相同点( 1 )它们都是二次根式 ;( 2 )它们都是非负数 ;( 3)当a≥ 0时 ,(a) 2 =a2 =a .2 .不同点( 1 )写法不同 :(a) 2 有括号 ,a2 没有括号 ;( 2 )读法不同 :(a) 2 读作a的算术平方根的平方 ,a2 读作a的平方的算术平方根 ;( 3)意义不同 :(a) 2 表示非负数a的算术平方根的平方 ;a2 表示实数a的平方的算术平方根 ;( 4 )取值不同 :(a) 2 中的a为非负数 ,a2 中的a为一切实数 ;( 5)运算顺序不同 :(a) 2 是先求a的算术平方根 ,再求它算术平方根的平方 ;a2是先求a的平方 ,再求平方后的算术根 ;( 6 )计算结果不同 :(a) 2 =a ,a2 =|a| =a(a≥ 0 ) … 相似文献
13.
14.
赖伟龙 《数理天地(初中版)》2002,(3)
同学们知道:这是根式的两个基本性质,很重要.本文分析它们的不同,以引起同学们的注意. 1.a的取值不同(1)中必须a≥0,(2)中a可取一切实数. 2.运算顺序不同(1)是先求a的算术平方根,然后求算术平方根的平方;(a~2)~(1/2)是先求a的平方,再求a2的算术平方根. 相似文献
15.
方程af(x)+f(x)~(1/b)=c,一般用代换法来解。但当a、b、c为整数,a>0时,用观察法来解,显得更为简便,下面介绍这种方法。定理:如果存在平方数m≥0,使 c=am+m~(1/b)则方程af(x)+f(x)~(1/b)=c ①与方程(f(x)-m~(1/2))(f(x)+b/a+m~(1/2)=0同解②其中f(x)为x的解析式。证明:设a是方程①的解,则 af(a)+f(a)~(1/b)=am+m~(1/b)∵ f(x),m≥0, 相似文献
16.
有不少同学把(、万),与丫丁混为一谈,其实它们有着原则的区别,主要有以下四点: 1.读法不同:临/百)2读作。的算术平方根的平方;、侣三读作a平方的算术平方根. 2.运算顺序不同:(了万),先算丫万,再算(必万)2;侧牙,先算矿,再算丫了3.运算结果不一定相同:、)2一。。。、。);、一。一) }a,倪>O,O,a=O,一口,a<0. 4.取值范围不同:在朴2万)2中,a的取值范围是“)。;在、7中,“的取值范围为一切实数. (江苏省盐城市马沟中学吴友智)(a~(1/2))~2与(a~2)~(1/2)相同吗?@吴友智$江苏省盐城市马沟中学~~… 相似文献
17.
在学习二次根式时,部分同学常将(a)2与a2混为一谈,误认为(a)2=a2,其实,二者并不一样,现从以下几个方面加以辨析:1、写法不同:(a)2中平方在根号外;而(a2)中平方在根号内。2、读法不同:(a)2读作a的算术平方根的平方;a2读作a的平方的算术平方根。3、运算顺序不同:(a)2是先求a的算术平方根,然后再求这个算术平方根的平方;而a2先求a的平方,再求a2的算术平方根。4、取值范围不同:在(a)2中,a的取值范围是非负实数,即a≥0;当a<0时,无意义;而在a2中,a的取值范围是全体实数。5、结果不同:(a)2=a(a≥0)(a2)=|a|=a(a≥0)-a(a<0)在具体计算时,(a)2(a≥0)… 相似文献
18.
有些同学在学习二次根式时,将与混为一谈,误认为其实.二者并不是一回事.为了帮助这些同学纠正这一错误认识,现将与的区别与关系归纳如下.与的区别有以下几点:1.形式不同:中平方号在根号外,而中平方号在根号内.2.意义不同:表示a的算术平方根的平方,而表示a的平方的算术平方根.3.运算顺序不同:是先求a的算术平方根,然后再求这个算术平方根的平方,而是先求a的平方,再求a2的算术平方根.4.a的取植范围不同:在中,a的取值范围是非负实数,即a≥0;而在中,a的取值范围是全体实数.5.得出计算结果的依据不同:是根据平方根的… 相似文献
19.
有些同学在学习二次根式时,将与混为一谈,误认为.其实,二者并不是一回事.为了帮助这些同学纠正这一错误认识,现将与的区别与关系归纳如下.与的区别有以下几点;1.形式不同:中平方号在根号外,而中平方号在根号内.2.意义不同:表示。的算术平方根的平方,而表示的平方的算术平方根.3.运算顺序不同:是先求a的算术平方根,然后再求这个算术平方根的平方,而是先求a的平方,再求a2的算术平方根.4.a的取值范围不同:在中,a的取值范围是非负实数,即;而在中,a的取值范围是全体实数.5·得出计算结果的依据不同:(/a)’一a(… 相似文献
20.
分式不等式的证明是一热门话题 ,方法颇多 .本文介绍Cauchy不等式的一个变形 :定理 设 pi ∈R+ ,xi ∈R ,i =1,2 ,… ,n ,则(p1x1+p2 x2 +… +pnxn) 2 ≤(p1+p2 +… +pn) (p1x21+p2 x22 +… +pnx2 n) .该定理可记为F(p1,p2 ,… ,pn;x1,x2 ,… ,xn)≥ 0 ,或简记为 :F(pi;xi)≥ 0 .定理广泛应用于一类不等式的证明 ,尤其是证明一类分式不等式 :只须适当地、巧妙地选取 pi,xi;换言之 ,只须恰当地构造F(pi;xi) ≥ 0 .1 巧证一类不含等号的不等式例 1 (第 32届乌克兰数学竞赛试题 … 相似文献