首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
解析几何中弦中点的轨迹主要有以下三类:①过定点的弦中点;②斜率为定值的平行弦中点;③长为定值的动弦中点,下面予以展示。  相似文献   

2.
二次曲线的仿射性质探讨   总被引:2,自引:1,他引:2  
通过实例,由定义和定理,解得了抛物线的任意一组平行弦中点共线;平行于一对共轭直径的椭圆外切平行四边形面积为常量;椭圆的二共轭半径之平方和为定值;双曲线上任一点引两直线各平行于渐近线,这二线和渐近线构成的平行四边形面积一定;双曲线的弦的中点的轨迹在平行于另一渐近线的直线上;通过有心二次曲线一点的直径的共轭直径平行于该点的极线及平分弦的问题.  相似文献   

3.
结论1:在椭圆x2/a2 y2/b2=1(a>b>0)上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值-b2/a2(注:若椭圆焦点在y轴上时,即b>a>0,则定值为-a2/b2).证明:设原点为O,A(x1,y1),B(x2,y2)是椭圆上的任意不同的两点,  相似文献   

4.
在解析几何中,中点弦问题是一个很常见很重要的问题.中点弦问题通常用“点差法”求解,也可以列方程组,用韦达定理求解.反过来,如果弦满足某些条件(斜率是定值、经过定点或弦长为定值等),与两条相交直线都相交的弦的中点的轨迹方程是什么?轨迹是什么?这是一个值得探究的问题.  相似文献   

5.
张乃贵 《中学教研》2004,(10):10-12
性质椭圆上任意一点P与过中心的弦AB的两端点A、B连线PA、PB与对称轴不平行,则直线PA,PB的斜率之积为定值.证明如图1,设P(x,y),A(x1,y1),则B(-x1,-y1),①-②得  相似文献   

6.
文[1]给出圆锥曲线的一个奇妙性质:过圆锥曲线Г上的一个定点P任作两条互相垂直的弦PM,PN,则直线MN必过定点(有穷点或无穷远点).无独有偶,文[2]也得到圆锥曲线的一个类似的定值性质:过圆锥曲线Г(坐标轴与曲线的对称轴平行)上的一个定点P任作两条角互补的弦PM、PN,则直线MN必有定向.  相似文献   

7.
正在解析几何中有如下的定义:定义1[1]二次曲线平行弦中点的轨迹叫做这个二次曲线的直径,它所对应的平行弦,叫做共轭于这条直径的共轭弦,而直径叫做共轭于平行弦的直径.由此,我们便容易得出椭圆共轭直径的如下定义:定义2如图1,椭圆中平行于直径CD的弦的中点的轨迹AB和直径CD叫做互为  相似文献   

8.
文[1]探究了双曲线平行弦的两个性质,笔者通过对椭圆的探究,也发现了它的平行弦之间的几个新性质.  相似文献   

9.
1 定值问题定理1 以双曲线焦点弦为直径的圆必与相应准线相交,并且该圆被此准线所截得的两圆弧长度之比为定值。证①如图1所示,设焦点弦AB的中点为  相似文献   

10.
关于椭圆的中点弦问题   总被引:1,自引:0,他引:1  
在已知椭圆中,关于其中点弦的以下三个问题: (1) 求弦长为定值的弦的中点的轨迹方程; (2) 求弦长为定值时,弦的中点到椭圆的中心的距离的最大值; (3) 弦的中点到椭圆的中心的距离为定值时,求弦长的最大值。笔者所见的讨论不多,偶有所见,其解法也往往比较复杂。本文旨在用同一种方法——参数坐标法,来探求上述三个问题,解法简捷明了。为了应用方便,将有关结论归结为以下两个定理: 定理1 设椭圆Γ:x~2/a~2 y~2/b~2=1(a>b>0),  相似文献   

11.
垂直和平行是平面中两条直线的重要位置关系,有不少的文献都研究了圆锥曲线中平行弦的一些性质,本文得到椭圆垂直弦的一组性质.  相似文献   

12.
平面解析几何中,求二次曲线平行弦中点的轨迹问题,需引入渐近方向等概念,本文利用点对称概念解决了寻求一般二次曲线平行弦的中点轨迹方程等问题,供同行参考.  相似文献   

13.
圆锥曲线的焦点弦是指经过圆锥曲线焦点的弦,笔者在教学中归纳出与其有关的几个定值,有助于进一步加深对圆锥曲线性质的认识.  相似文献   

14.
文[1]论述了圆锥曲线的动弦的两端与曲线上定点连线的斜率之积为定值时动弦过定点的性质,本文将探讨斜率之和为定值时动弦过定点与有定向的性质.定理1椭圆b2x2+a2y2=a2b2上定点P(x0,y0)与椭圆上两点A、A'连线的斜率存在,则:(i)动弦AA’所在直线必过定点M(x0+a/bk·y0,b/ak·x0-y0为)(k≠0)的充要条件是PA、PA’的斜率之和为为定值-2k·b/a;(ii)动弦AA'必有定向(kAA'=b2/a2·x0/y0)的充要条件是PA、PA'的斜率之和为0.比较(l)、(2)两式可知:直线AA’过定点(定值)所以动弦AA’有定向.推论(i)满足定…  相似文献   

15.
文[1]介绍了椭圆中两条垂直弦的一个有趣性质。本文来介绍椭圆中两条平行弦的一个有趣性质,并说明其应用。 性质 MN是经过椭圆b~2x~2 a~2y~2=a~2b~2(a>b>0)焦点的任一弦,若AB是经过椭圆中心且平行于MN的弦,则  相似文献   

16.
如图1,P为圆O内一定点,过P点的三条弦AB,CD,EF,每两条弦的夹角都是60°,则有如下有趣性质:(1)AB2+CD2+EF2为定值;(2)PA2+PB2+PC2+PD2+PE2+PF2为定值.  相似文献   

17.
文[1]结合两道高考题定义了“椭圆焦点弦四边形”,进而提出并证明了两个定理.其中定理2如果椭圆的长半轴为a,短半轴为b,那么两条焦点弦所在直线的斜率之积为定值-m(m≥1)的椭圆的焦点弦四边形面积有最小值,  相似文献   

18.
依托椭圆与圆之间的特殊关系,运用几何法和坐标变换证明若椭圆的弦所在直线过定点,则椭圆上存在一点,使得这个点与弦的两个端点的连线的斜率之积为定值,从而揭示椭圆定点弦结论的几何本质。  相似文献   

19.
代银 《中学教研》2006,(12):38-39
文献[1]给出了双曲线平行弦的2个优美性质:性质1过双曲线ax22-yb22=1(a>0,b>0)顶点A的弦AQ交y轴于点R,过双曲线中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.性质2MN是过双曲线x2a2-by22=1(a>0,b>0)焦点F的弦,过双曲线中心O的半弦OP与MN平行,则|OP|2=2a|MN|.在此基础上,笔者对椭圆与抛物线的平行弦做了探究,有些结论令人惊喜.图1定理1如图1,过椭圆x2a2+yb22=1(a>b>0)顶点A的弦AQ交y轴于点R,过椭圆中心O的半弦OP与AQ平行,则|OP|2=21|AR|·|AQ|.证明设OP的参数方程为x=tcosα;y=tsinα,(α为倾斜角,t为参数)将x,y代入椭圆方…  相似文献   

20.
在圆中,垂直于弦的直径平分此弦,并且平分此弦所对的弧,这就是垂径定理。由垂径定理可知,圆的直径为圆中一组平行弦中点的轨迹。把这一结论推广至圆锥曲线中,于是就有了圆锥曲线直径的概念。所谓圆锥曲线的直径就是圆锥曲线中一组平行弦中点的轨迹。本文将应用代换法则,由圆锥曲线的中点弦方程推导出直径方程,再举例说明直径方程在求解(或证明)一类对称问题中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号