首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>函数零点问题一直是高考中的热点和难点,尤其是当其与导数结合起来时,解题方法更显得灵活多变,难度不容小觑,笔者认为,函数零点问题的基本解决思路及方法可归纳如下:首先研究函数f(x)单调性——自然要借助函数f(x)的导函数f′(x)(或f″(x))——这就需要知晓f′(x)的正负——往往要利用导函数f′(x)的零点——或隐零点——利用“隐零点”时则需借助“变形+构造”或“变形+放缩+构造”等方法来实现解题目的.  相似文献   

2.
导数是高等数学的重要概念之一,它是研究可导函数的重要工具.在研究函数的单调性、极值、曲线的切线等方面都有它的一席之地.本文拟通过实例来剖析导数在初等数学中的一些应用.1 研究函数的单调性 利用导数研究函数的单调性,主要是根据下列结论:“设函数 y = f (x) 在某个区间内可导,若 f ′(x) > 0 ,则 f (x) 在此区间内为增函数;若 f ′(x) < 0 ,则 f (x) 在此区间内为减函数”.其一般步骤为:(1)求出导函数 f ′(x) ;(2)令 f ′(x) > 0 ,求出其解集,即为 f (x) 的单调递增区间;令 f ′(x) < 0 ,求出其解集,即 f (x) 的单调递减区间. …  相似文献   

3.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

4.
<正>解答这类问题的有效策略是将"f(x)g(x)"的外形结构特征与导数运算法则结合起来,即当题设条件中存在或通过变形出现特征式"f′(x)g(x)+f(x)g′(x)"时,可联想、逆用"f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′",先构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题根据。例题设函数f(x)、g(x)分别是定义  相似文献   

5.
赵中华 《中国考试》2004,(10):34-35
用导数研究函数的单调性,利用的是可导函数的单调性与其导数的关系:设函数f′(x)在某个区间内可导,如果f′(x)>0,则f′(x)为增函数;如果f′(x)<0,则f′(x)为减函数。利用导数的方法研究函数单调性的试题,所给的函数解析式中往往含有字母参数,求导后f′(x)的解析式是含有字母参数的解析式,于是在研究f′(x)>0或f′(x)<0时,就转化为研究含有字母参数的不等式,这种类型的问题  相似文献   

6.
1 可导函数f(x)与其导函数f′(x)的对称性的有关结论 定理 设x0为函数f(x)定义域内的一点,n=f(x0)+f(2m-x0)2,则 (1)函数f(x)关于直线x=m对称的充要条件是f′(x)关于点(m,0)成中心对称;  相似文献   

7.
对导函数的重要性质:介值性与无第一类间断点的性质进行了剖析和证明,分析了f ′(x0)与f′(x0 0),f′(x0-0)及f′(x0)与limx→x0f′(x)之间的关系,并举例说明了它们的应用。  相似文献   

8.
<正>函数是高中数学的重要内容,而抽象函数则是函数中的一个特殊部分、特殊的分支.由于抽象函数没有具体的解析表达式作为载体,理解和研究起来比较困难.此类题目难度大、灵活性强,因此倍受命题者的青睐.本文举例说明函数的四则运算求导法则在抽象函数导数问题中的解题策略,供大家参考.一、构造可导和、差函数一般地,若条件含有f ′(x)±g′(x)的结构,根据导数的和差求导法则逆向思维,可构造函数F(x)=f(x)±g(x)解题.  相似文献   

9.
1问题呈现问题1(2020全国Ⅱ卷文21)已知函数f(x)=2 ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)-f(a)x-a的单调性.问题2(2020天津卷20)已知函数f(x)=x 3+k ln x(k∈R),f′(x)为f(x)的导函数.(1)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)-f′(x)+9 x的单调区间和极值.  相似文献   

10.
1导函数f′(x)在x=x0处的极限与函数y=f(x)在x=x0处的可导性定理1若函数f(x)在(a,b)内连续,在(a,b)中除点x0外处处可导,且li mx→x0f′(x)存在,那么函数y=f(x)在x=x0处可导,且f′(x0)=lxi→mx0f′(x).证明:任取异于x0的x∈(a,b),在[x0,x]或[x,x0]上应用lagrange中值定理,有f(xx  相似文献   

11.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

12.
例1已知函数f(x)=ax3+bx2+(b-a)x,(a,b是不同时为零的常数),导函数f′(x),求证:函数y=f′(x)在(-1,0)内至少有一个零点.  相似文献   

13.
著名数学家波利亚在《怎样解题》一书中明确提出,联想是解题计划的重要一环,学会联想是数学解题成功的一大关键.因此,在解题过程中,要善于观察题设条件与所求结论的结构特征,分析题设与结论之间的联系,联想题目与已有知识结构的相似性.本文结合联想导数运算法则,举例说明之.一、联想和、差函数的导数运算法则例1设函数f(x)、g(x)在区间[a,b]上连续,在区间(a,b)上可导,且f′(x)g(x)(B)f(x)g(x)+f(b)(即选项  相似文献   

14.
导数是新教材第三册(选修Ⅱ)中的新添内容之一,教材主要介绍了导数在解题中判断函数单调及求函数极值与最值的应用,本文结合具体实例,就导数在解题中其它方面的几点应用作一下归纳,仅供读者参考.1判断函数图象例1设函数y=f(x)在定义域内可导,其图象如右图所示,则其导函数y=f′(x)的图象为()分析由y=f(x)的图象可以看出,当x<0时,y=f(x)是单调递增函数,由此可得:对任意x<0,f′(x)>0恒成立;所以可以排除(A)、(C);又因为x>0时,y=f(x)有两个极值点,所以x>0时,f′(x)=0有两个不等实根,且在两根左右两侧,f′(x)符号相反,因此答案应选(D).2化简例2…  相似文献   

15.
导数在研究函数单调性中的应用和延伸   总被引:1,自引:0,他引:1  
“导数与微分”这部分内容 ,是高中数学新教材试验修订本第三册选修本新增内容 .它为研究函数的性质 (特别是函数的单调性 )提供了强有力的工具 ,具有广义的作用 ,教学大纲对于该部分内容突出一个“用”字 .即会用导数与微分概念公式及相关知识解决有关函数单调性和最值问题 ,本文例谈导数在研究函数单调性时的应用 .利用导数 ,函数的单调性判别法则为 :在区间B上 ,若 f′(x) >0 ,则 f(x)在B上是增函数 ;若 f′(x)<0 ,则 f(x)在B上是减函数 .反之 ,若 f(x)在B内可导 ,那么若 f(x)在B上是增 (减 )函数 ,一定有f′(x) ≥ 0 (≤ 0 ) .例 1 …  相似文献   

16.
一、导数与函数单调性相关问题例1已知a!R,求函数f(x)=x2eax的单调区间.解析函数f(x)的导函数f′(x)=2xeax ax2eax=(2x ax2)eax.(1)当a=0时,若x<0,则f′(x)<0;若x>0,则f′(x)>0.故当a=0时,函数f(x)在区间(-∞,0)内为减函数,在区间(0, ∞)内为增函数.(2)当a>0时,由2x ax2>0,解得  相似文献   

17.
1逆用导数运算法则构造例1(2011年广东佛山模考)设函数f(x),g(x)在R上的导函数分别为f′(x),g′(x),且满足f′(x)g(x)+f(x)g′(x)<0,则当af(b)g(x)(B)f(x)g(x)>f(b)g(b)(C)f(x)g(a)  相似文献   

18.
题目已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.本题是2012年山东高考数学理科试题函数问题压轴题,在知识上主要考查函数的定义域、单调性,导数、导数的几何意义,不等式的证明;  相似文献   

19.
<正>1试题呈现(2019年新课标全国卷Ⅰ文科第20题)已知函数f(x)=2sinx-xcosx-x,f′(x)是f(x)的导函数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π],f(x)≥ax,求a的取值范围.2试题解析与评析  相似文献   

20.
<正>函数与导数以及不等式的交汇,一直是高考数学必考的一个重要内容,此类相关问题应引起我们的高度重视.一般地,如题设条件中给出函数f(x)与其导函数f ′(x)共存类不等式,那么处理此类问题时,需要先根据所给不等式灵活构造一个新函数,再依据求导知识分析新函数的单调性,最后通过运用新函数的单调性以及其他已知条件,即可顺利求解目标问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号