首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在闭区间上的二次函数的绝对值不等式的证明有一个通法 :将二次函数的系数用闭区间上的三个函数值 (一般用区间端点和中点的函数值 )来表示 ,然后借助于绝对值不等式来解决 .例 1 设a、b、c∈R ,f(x) =ax2 +bx +c(a≠ 0 ) .若 | f( 0 ) |≤ 1,|f( 1) |≤ 1,|f( - 1) |≤ 1,试证 :对任何x∈ [- 1,1] ,都有 |f(x) |≤ 54 .证明 :因f( 0 ) =c,f( 1) =a +b+c,f( - 1) =a-b +c,故解得a =f( 1) + f( - 1)2 - f( 0 ) ,b =f( 1) - f( - 1)2 ,c=f( 0 ) .∵  |x|≤ 1∴  | f(x) | =|ax2 +bx +c|=f( …  相似文献   

2.
下面,通过一些具体例子说明函数思想在解题中的运用.  一、比较大小例1 试比较|a+b|1+|a+b|与|a|+|b|1+|a|+|b|的大小.解:对于函数f(x)=x1+x=1-11+x,易知当x∈(-1,+∞)时,其为增函数.而0≤|a+b|≤|a|+|b|,故|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|.注:通常可以利用函数的单调性解决比较大小的问题.二、证明不等式例2 已知实数a、b、c∈(0,1),证明:不等式a(1-b)+b(1-c)+c(1-a)<1总成立.证明:欲证不等式等价于(1-b-c)a+(1-c)(b-1)<0.记f(a)=(1-b-c)a+(1-c)(b-1),故欲证原不等式成立,只需证明a∈…  相似文献   

3.
例1 f(x)是定义在[-1,1]上的奇函数,f(x)=g(2-x),而x∈[2,3]时,g(x)=-x2+4x+c(c为常数).(1)求g(2)及c的值.(2)求f(x)的表达式.(3)对任意x1、x2∈[0,1]且x1≠x2,求证:|f(x1)-f(x2)|≤1.解:(1)g(2)=f(0)=0,c=-4.(2)f(x)=g(2-x)=-x2,x∈[-1,0];x2,x∈(0,1].(3)欲证的|f(x1)-f(x2)|≤1|x22-x21|≤1-1≤x22-x21≤1.又因为x1、x2∈[0,1],x1≠x2,故x21∈[0,1],x22∈[0,1].先视变元x2为主元,再视x1为主元,连续放缩,-1≤-x21≤x22-x21≤1-x21≤1,故原不等式成立.例2 f(x)=x3+ax+b定…  相似文献   

4.
选择题1 下列各式 :( 1) 2 0 0 1 {x|x≤ 2 0 0 3};( 2 ) 2 0 0 3∈ {x|x <2 0 0 3};( 3) {2 0 0 3} {x|x≤ 20 0 3};( 4)Φ∈ {x|x <2 0 0 3},其中正确式子的个数为 (   )A 1  B 2  C 3  D 42 满足f(π +x) =- f(x) ,f( -x) =f(x)的函数 f(x)可能是 (   )A sinx B sin x2  C cos2x D cosx3 若函数 f(x) =ax(a >0 ,a≠ 1)为减函数 ,那么 g(x) =log1a1x - 1的图象是 (   )A       BC       D4 如果a·b =a·c且a≠ 0 ,那么 (   )A b =…  相似文献   

5.
问题 :对于函数 f(x) ,若存在x0 ∈R ,使f(x0 ) =x0 成立 ,则称x0 为 f(x)的不动点 .如果函数 f(x) =x2 +abx-c(b,c∈N)有且只有两个不动点 0 ,2 ,且f( -2 ) <-12 .( 1 )求函数 f(x)的解析式 ;( 2 )已知各项不为零的数列 {an}满足4Sn·f 1an =1 ,其中Sn 是数列 {an}的前n项和 ,求数列通项an.( 3 )如果数列 {an}满足a1 =4,an+1 =f(an) ,求证 :当n≥ 2时 ,恒有an <3成立 .一、分析与评述( 1 )分析 :由f( 0 ) =0 ,可得a=0 ,①又由 f( 2 ) =2可得 ,2b =c+2 ,②再由 f( -2 ) <-12 可得 ,2…  相似文献   

6.
擂台题 (5 4 ) :证明或否定若a、b、c为△ABC的三边长 ,实数λ≥ 2 ,则(b+c-a) λbλ+cλ +(c+a -b) λcλ+aλ +(a +b -c) λaλ+bλ ≥ 32①引理 若m、n∈R+ ,实数 p≥ 1 ,则(m +n2 ) p≤ mp+np2 ②证明  (1 )当 p =1时 ,②式等号成立 ,(2 )当 p >1时 ,令 f(x) =xp(x >0 ) ,这时 ,f′(x) =pxp- 1,f″(x) =p(p -1 )xp - 2 >0 ,所以 f(x)是 (0 ,+∞ )上的凹函数。因为m、n∈R+ ,由琴生不等式知f(m +n2 )≤ f(m) +f(n)2 ,即有 (m +n2 ) p≤ mp+np2 ,当且仅当m =n…  相似文献   

7.
欢迎您—2003     
一年一度的佳节———元旦 ,就要来临了 ,为了欢度节日 ,特为数学爱好者 ,提供一组结果均为 2 0 0 3的函数趣题以资助乐 .1 设对于函数 :f(x) =x +3x - 2 ,g(x) =ax +bx +c ,且有 f[g(x) ] =2 0 0 6x +42 0 0 1x - 1,试求a、b、c之值 .解 由题目条件得 :f[g(x) ] =g(x) +3g(x) - 2=ax +bx +c +3ax +bx +c - 2=(a +3)x +(b +3c)(a - 2 )x +(b - 2c) .由题设知(a +3)x +(b +3c)(a - 2 )x +(b - 2c) =2 0 0 6x +42 0 0 1x - 1,整理得 :( 5a - 10 0 15)x2 +( 5a +5b - 10 0 15c- …  相似文献   

8.
数学问答     
66.问 :已知af(4x -3 ) +bf(3 -4x) =2x(a2 ≠b2 ) ,求 f(x) .(河南商丘市一高一 (18)班 吴 鹏)答 :令 4x -3 =t ,则有 2x =t+ 32 ,所以af(t) +bf(-t) =t + 32 .①将①中的t换成 -t,则af(-t) +bf(t) =-t+ 32 .②由①、② ,结合a2≠b2 ,消去 f(-t)得 f(t) =12 (a -b) t + 32 (a +b) .∴ f(x) =12 (a -b) x + 32 (a +b) .注 :1.对于此类函数方程 ,一般可通过赋值和解方程组 ,求出函数解析式 .2 .相关链接 :(1)对于任意非零实数x ,函数 f(x)满足af(x) +bf 1x =cx(a、b、c均…  相似文献   

9.
定理 设△ABC的顶点为A (x1,y1)、B(x2 ,y2 )、C(x3,y3) ,P(xp,yp)为△ABC内任一点 ,则△ABC的方程为|a1x b1y c1 |f2 || |f2 | a3x b3y c3=0 .①其中f2 =x y  1x1 y1  1xp yp  1,a1=( y3-yp)Δ -( y2 -yp)Δ2Δ3,b1=(x3-xp)Δ -(x2 -xp)Δ2Δ3,c1=(xpy3-x3yp)Δ1 (x2 yp-xpy2 )Δ2Δ3,a3=[2Δ1Δ2 ( y2 -y3) Δ1Δ3( y3-y1) Δ2 Δ3·( y1-y2 ) ]/ΔΔ3,b3=[2Δ1Δ2 (x2 -x3) Δ1Δ3(x3-x1) Δ2 Δ3·(x1-x2 ) ]/ΔΔ3,c3=[2Δ1Δ2…  相似文献   

10.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

11.
20 0 2年高考有一道数学题为 :已知a >0 ,函数 f(x) =ax -bx2 .(1)当b >0时 ,若对任意x∈R ,都有f(x) ≤ 1,证明 :a≤ 2b ;(2 )当b >1时 ,证明 :对任意x∈ [0 ,1],|f(x)|≤ 1的充要条件是b- 1≤a≤ 2 b ;(3)当 0 <b≤ 1时 ,讨论 :对任意x∈[0 ,1],|f(x)|≤ 1的充要条件 .绝大多数考生做此题时无所适从 ,根本不知从何下手 ,参考答案给出的方法比较抽象 ,难于理解 ,笔者有一解法 ,介绍如下 :解  (1)由已知ax -bx2 ≤ 1,∴ bx2 -ax +1≥ 0 .∵ x∈R ,b >0 ,∴ Δ =a2 - 4b≤ 0 ,∴ a≤ 2 b .…  相似文献   

12.
定理 二次函数 y =ax2 bx c的值域是[0 , ∞ )的充要条件是a>0且b2 - 4ac=0 .证明 因为 y =ax2 bx c =a(x b2a) 2 4ac-b24a ,x∈R ,所以二次函数y=ax2 bx c的值域是 [0 , ∞ ) y的最小值是 0 ,无最大值 a>0且b2 - 4ac=0 .下面举例说明定理的应用 .例 1 已知 f(x) =2x2 bx cx2 1(b <0 )的值域为[1,3] ,求实数b,c的值 .解 f(x)的定义域为R .由 1≤2x2 bx cx2 1≤ 3,得x2 bx c- 1≥0且x2 -bx 3-c≥ 0 .所以 f(x)的值域为 [1,3] y1=x2 bx c- 1和 …  相似文献   

13.
高中代数上册第 2 97页给出了三角方程 asinx bcosx c =0 (a、b不同时为零 )有解的 条件是 | c a2 b2 |≤ 1 ,即a2 b2 -c2 ≥ 0。若记Δ = a2 b2 -c2 ,并称其为“三角判别式” ,可进一步得到 : 定理 对于三角方程asinx bcosx c =0 (0≤ x <2π ,a、b不同时为零 ) ,则 ①方程有两个不同解 Δ >0 ; ②方程有唯一解 Δ =0 ; ③方程无解 Δ <0。 证明极其简单 ,只要将原方程化为sin(x φ) = -c a2 b2 ,其中 φ由sinφ =b a2 b2 ,cos…  相似文献   

14.
构造函数法是证不等式的一种重要方法 ,本文谈谈构造函数法证不等式的几种思考途径 .途径一 利用函数的单调性构造一个函数 ,使原不等式 (或经等价变形后 )的左右两边是这个函数在某一个单调区间上的两个值 ,就可以利用函数的单调性证明不等式 .例 1 已知a、b、c∈R ,且a b c =1,求证 :abc 1abc≥ 2 712 7.证明 令 f(x) =x 1x ,取 0 <x1<x2 <1,则f(x2 ) - f(x1) =(x2 -x1) 1x2 - 1x1=(x2 -x1) 1- 1x1x2 <0 ,所以 f(x)在 (0 ,1)上为减函数 .又 0 <abc≤ a b c33=12 7,∴f(abc) ≥ f 12 …  相似文献   

15.
本文用初等方法导出函数 f(x) =ax b cx d(a >0 ,c<0 )的几个优美性质。1 f(x)不是单调函数显然 ,函数的定义域为 [-ba ,-dc]。任给x1、x2 ∈ [-ba ,-dc],且x1<x2 ,则f(x1) -f(x2 ) =(ax1 b cx1 d) -(ax2 b cx2 d)=(ax1 b  相似文献   

16.
一类函数问题的简解   总被引:1,自引:0,他引:1  
1999年第十届“希望杯”全国数学邀请赛 ,高二第一试的选择题第 1 0题 ,让人颇费脑筋 ,原题是这样的 :题目 :设f(x) =x3 -3x2 6x -6,且f(a) =1 ,f(b) =-5 ,则a b =(   ) .A .-2  B .0  C .1  D .2与之类似的有以下两个题 :1 设 f(x) =x3 x 1 ,且 f(a) =-2 ,f(b) =4,则a b =(   ) .A .-2  B .0  C .1  D .22 设 f(x) =x3 -6x2 1 2x -7,且 f(a b) =9,f(a -b) =-7,则a =(  )A .-2  B .0  C .1  D .2以上题目都是关于x的三次函数 ,初看起来 ,上面的题好像容易解…  相似文献   

17.
一、填空题 (15分 )1 用科学记数法表示 - 0 0 0 0 0 0 0 0 0 10 2 9=.2 不等式组12 x≥ 1x - 3≤ 0的解集是 .3 (x -a) (x a) (x4 a4 ) (x2 a2 ) =.4 当x时 ,代数式13(x - 1)5的值不是正数 .5 方程组 ax by =13ax - 4by =18和 4x - y =53x y =9有相同的解 ,那么a b的值为 .6 若 |x 1| (y - 2 ) 2 =0 ,则xy =.7 若有理数a满足 a|a|=- 1,则a是 .8 若 11- |1-x|有意义 ,则x取 .9 12 5a3b3÷ 5ab =.10 [(-x) 3]4 =.11 若a <0 <b ,且 |a|>b ,则化简 |a b|- |a -b|- |b -a|=.12…  相似文献   

18.
顾静相 《当代电大》2002,(11):10-14
5 不定积分5 .1 填空题(1 )曲线在任意一点处的切线斜率为 2x ,且曲线过点(2 ,5) ,则曲线方程为。(2 )已知函数 f(x)的一个原函数是arctanx2 ,则 f′(x) =。(3)已知F(x)是 f(x)的一个原函数 ,那么∫f(ax+b)dx =。(4)若∫f(x)dx =x+1x - 1 +c,则 f(x) =。(5)若∫f(x)dx =F(x) +c,则∫e-xf(e-x)dx =。答案(1 )y =x2 +1(2 ) 2 - 6x4(1 +x4 ) 2(3) 1aF(ax +b) +c(4) - 2(x- 1 ) 2(5) -F(e-x) +c5 .2 单选题(1 )设∫f(x)dx =xlnx+c,则f(x) =(   )。 A lnx+1 …  相似文献   

19.
最值问题是中学数学中一个重要内容 ,其涉及面广 ,难度较大 ,求解方法灵活多样 .本文通过构造函数和曲线来解决某些最值问题 ,不仅形象直观、易于掌握 ,而且可以减少许多不必要的计算 ,达到化难为易的目的 .一、构造函数求最值1 .构造二次函数例 1 设a b c d e =8,a2 b2 c2 d2 e2 =1 6,求e的最大值 .解 :设f(x) =(x a) 2 (x b) 2 (x c) 2 (x d) 2=4x2 2 (a b c d)x a2 b2 c2 d2显然f(x) ≥ 0 ,且x2 的系数为正 ,则△ =b2 -4ac≤ 0 ,即4(a b c d) 2 -1 6(a2 b2 c2 d2 )=4( 8…  相似文献   

20.
笔者在教研过程中碰到两次活动 :1 在一次校教研活动中 ,听一位老师上课 ,让学生练习 :已知二次函数f(x) =ax2 bx c(a≠0 ) ,如果 f (x1 ) =f (x2 ) (x1 ≠x2 ) ,则f(x1 x2 ) =   (浙江省 1999年会考第 2 4题 ,原题是选择题 )一基础较差的学生举手回答如下 :∵ f(x1 ) =f(x2 ) (x1 ≠x2 ) ,∴x1 =-x2 .∴ f(x1 x2 ) =f(0 ) =c .教师评析 ,这种做法是错误的 ,推理毫无依据 .学生带着难言的神色 ,尴尬地坐下了 .然后教师讲解 :∵ f(x1 ) =f(x2 ) ,∴二次函数对称轴是x =x1 x22 ,∴x1 x2 =-b…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号