首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在历年的全国高中数学联赛中 ,考查不等式的问题已屡见不鲜 ,尤其是利用构造不等式解决与最值有关的问题一直是近几年的考查热点 .笔者在多年的竞赛辅导中发现 ,全国高中数学联赛中的不等式问题有以下几种常见类型 .1 基本不等式法例 1 设 n为正自然数 ,a,b为正实数 ,且满足 a+ b=2 ,则 11+ an+ 11+ bn的最小值是 .(1990年全国高中数学联赛题 )解 ∵ a,b>0 ,∴ ab≤ (a+ b2 ) 2 =1,anbn≤ 1.故11+ an+ 11+ bn=1+ an+ bn+ 11+ an+ bn+ anbn≥ 1,当 a=b=1时上式等号成立 ,故最小值是 1.例 2 设 a=lgz+ lg[x(yz) -1+ 1],b=lgx-1+lg(xyz+ 1)…  相似文献   

2.
本刊文[1]用了10种方法,通过15个例题说明了多元函数最值的求法.受此启发,本文将用向量中的重要不等式a2·b2≥(a·b)2来解决部分多元函数最值问题,权作对文[1]的补充.我们把a和b都看成n维向量(n≥2),它们的坐标表示分别是a=(a1,a2,…,an),b=(b1,b2,…,bn),定义向量a和b的数量积a·b=a1b1+a2b2+…+anbn,则a=a12+a22+…+an2,b=b12+b22+…+bn2,由柯西不等式:(a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2,推得a2·b2≥(a·b)2.下面举例说明其应用.例1已知3a2+2b2=5,试求y=2a2+1·b2+2的最大值.解由题意,将已知条件等价变形为32(2a2…  相似文献   

3.
<正>证明不等式的方法有很多,有基本不等式法、函数法等.本文从一个独特的视角,采用全新的方法来证明不等式,即数形结合法,透过不等式的表面发现其几何意义,构造相应的几何图形来阐述不等式,将抽象问题具体化,直观化.题目设a>0,b>0,证明不等式2ab/(a+b)≤(ab)(1/2)≤(a+b)/2≤((a(1/2)≤(a+b)/2≤((a2+b2+b2)/2)2)/2)(1/2),当且仅当a=b时等号成立.思路这是2017年苏州市的一道高考模  相似文献   

4.
基本不等式(a+b2 ≥ ab)成立的前提条件是a>0,b>0,常用变形式有(a+b≥2ab和ab≤(a+b2 )2),取等号的条件是当且仅当a=b.在求解有关代数式或函数的最小值问题时,若能灵活运用基本不等式及其变式,往往可获得巧思妙解.  相似文献   

5.
一、齐次化与非齐次化齐次化方法与均值不等式、柯西不等式(或与它们等价的不等式)紧密联系,常应用于给定某个等量关系的不等式问题,也可应用于分式向常数的不等转化等.不等式的齐次化常可通过非齐次化的题设条件转化得到.例1(1)已知a2+b2=c2+d2=16,求证:|ac+bd|≤16;(2)已知a,b,c>0,ab+bc+ca=1,求证:a+b+c≤1/3abc;  相似文献   

6.
不等关系和相等关系是基本的数学关系,它们在数学学习与研究、应用中起着重要的作用.强调不等式及其证明的几何意义及数学背景,可以加深学生对不等式数学本质的理解.以提高学生的逻辑思维能力和分析问题解决问题能力.以柯西不等式证明为例,柯西不等式:a1,a2,b1,b2∈R,则(a1b1+a2b2)2≤(a21+a22)(b21+b22).(高中实验教材(湘教版)选修4-5)教材用构造两个向量α=(a1,a2),β=(b1,b2),由cos2<α,β>≤1得(a1b1+a2b2)2(a21+a22)(b21+b22)≤1,即(a1b1+a2b2)2≤(a21+a22)(b21+b22).教材又通过构造二次函  相似文献   

7.
<正>在一些不等式问题所给出的条件中,"已知正数a,b,c满足abc=a+b+c+2"出现的频率较高.本文首先给出"abc=a+b+c+2"的几个等价形式,然后探究以"abc=a+b+c+2"或它的等价形式为条件的一些不等式问题,最后探究"abc=a+b+c+2"的几何背景,仅供参考.  相似文献   

8.
(本讲适合高中 )比较几个数的大小 ,涉及的内容有指数对数的运算、三角函数运算、函数的周期性和单调性、不等式等诸多方面的知识 ,内容具有一定的综合性 ,可以考察学生多方面的能力 ,是数学竞赛的常见试题 ,也是中学数学教学的重要内容 .1 基础知识1 .1 基本不等式 :若a ,b ,c∈R+ ,则a +b≥2ab ,a +b +c≥ 3 3 abc ,或ab≤ ( a +b2 ) 2 ;abc≤( a +b +c3 ) 3.利用基本不等式是比较大小最常用的方法之一 .1 .2 函数单调性 :①若 f(x)是增函数 ,x1,x2 ∈D且x1f…  相似文献   

9.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

10.
<正>文[1]对一道不等式问题作研究,文末留下未解决问题,本文将给出该问题的结论.问题已知a、b、c≥0,a+b+c=1,研究fλ(a,b,c)=a2+b2+c2+λabc,(λ∈R)的最值.首先给出如下命题:命题1(最大值情形):fλ(a,b,c)≤max{λ+9/27,1}.  相似文献   

11.
1.问题试题(2013年湖南卷理科第10题)设a,b,c∈R,且满足a+2b+3c=6,则a^2+4b^2+9c^2的最小值为______.2.问题解决视角1柯西不等式法解法1:由柯西不等式得(a+2b+3c)^2=(1×a+1×2b+1×3c)^2≤(1^2+1^2+1^2)(a^2+4b^2+9c^2)=3(a^2+4b^2+9c^2),即a^2+4b^2+9c^2≥12,当且仅当a=2,b=1,c=2/3时等号成立.  相似文献   

12.
<正>基本不等式a+b≥2~(1/2)ab(a,b>0)与函数、三角函数、数列、向量、立体几何等知识交汇,成为解决问题的有力工具.它的主要作用是证明不等式、解决最值问题.本文介绍它在解决最值问题中的应用,以拓展同学们的  相似文献   

13.
数学的解题是想做到解一道题,就会解决一类题,并想通过拓展,做到举一反三.这是数学解题教学最想达到的目标.本文从一道经典的不等式问题出发,通过推广,从而达到解决一类题的目的.给出以下的不等式问题:若a,b>0,则a2/b+b2/a≥a+b1证明:由a,b>0,得a2/b+b≥2a,b2/a+a≥2b,把两式相加可得,a2/b+b2/a≥a+b成立.1问题的字母个数的推广首先,把字母的个数推广到3个,得,  相似文献   

14.
高中《数学》(试验修订本·必修)第二册(上)第11页习题6.2第1题是:求证:(a2+b)2≤a22+b2.将上述不等式变形可得a2+b2≥(a+2b)2.(*)不等式(*)可利用均值不等式直接证明,也可借助恒等式2(a2+b2)=(a+b)2+(a-b)2及(a-b)2≥0证明.不等式(*)有着广泛的使用价值,本文略举数例加以说明.一、证明不等式【例1】设c是直角三角形的斜边,a、b是两条直角边,求证:a+b≤2c.证明:由题设得a2+b2=c2,由不等式(*)得c2=a2+b2≥(a+2b)2,即(a+b)2≤2c2,亦即a+b≤2c.【例2】己知a、b∈R+,且a+b=1,求证:a+21+b+21≤2.证明:由不等式(*)及已知有2=(a+21)+(b+21)≥(a+21…  相似文献   

15.
不等式问题覆盖面广、综合性强 ,是当今各层次数学竞赛 (包括IMO)的热点和难点之一 ,而不等式问题的处理更以“多入口 ,方法巧”见长 .为了寻求规律 ,探索解题途径 ,笔者搜集了部分有关不等式问题试题 ,深入研究 ,发现许多问题都能采用柯西不等式加以简单地解决 .下面举例加以说明 .例 1 设a ,b ,c∈R+ ,求证 :ab+c+ bc+a +ca+b ≥ 32 . ( 1)( 196 3年莫斯科竞赛题 )证明 令A =a(b +c) +b(c +a) +c(a +b) =2 (ab +bc +ca) ,B =ab+c+ bc+a+ ca+b.由柯西不等式 ,有AB≥ (a+b +c) 2 ,根据基本不等式 ,有A ≤ 23(a+b +c) 2 .所以 ,B≥ 32 …  相似文献   

16.
问题 1 《数学教学》2 0 0 3年第 2期“数学问题与解答”栏目中的第 5 80题为设a、b、c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b≥ 32 .①笔者试图探索这个新颖不等式的上界 ,得出问题 1 .1 设a ,b,c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b<73 .②综合不等式①、②得问题 1 .2 设a ,b,c为△ABC的三边 ,求证 :32 ≤ a2a +b -c+b2b +c -a+c2c+a -b<73 .③为了证明不等式③ ,笔者首先想到了它的类似 :问题 1 .3 设x ,y ,z为任意正实数 ,求证 :xy +z+yz +x+zx +y≥ 32 .④于是 ,联想到 :能否将不等式③转化为三…  相似文献   

17.
一、等式与不等式的转化例1若正数a,b满足ab=a+b+3,则ab的取值范围是______.分析为了求ab的取值范围,只要将原等式转化为不等式即可.解运用不等式a+b≥2ab姨,原等式可化为不等式.∵ab=a+b+3≥2ab姨+3,∴ab-2ab姨-3≥0.又ab姨>0,∴ab姨≥3,即ab≥9.例2已知不等式a2+b2+c2+4≤ab+3b+2c,求正整数a,b,c.分析本题所给的是不等式,而求的是a,b,c,故应将原不等式转化为3个等式,才能解决问题.解∵不等式的两边是整数,∴将a2+b2+c2+4≤ab+3b+2c配方得(a-b2)2+3(b2-1)2+(c-1)2≤0.则有a-b2=0,b2-1=0,c-1=0,∴原不等式有唯一的一组解a=1,b=2,c=1.二、常…  相似文献   

18.
不等式证明既是高中数学的重点,也是高中数学的难点。化归函数法、放缩法是技巧性较高的不等式证明方法.一、化归函数法例1、已知a,b,c,d∈R,且a2+b2=1,c2+d2=1求证:-14FabcdF41分析:将已条件与sin2α+cos2α=1进行对照,可知本题能通过换元将原不等式问题转化为三角函数求值域的问题来解决.证明:设a=sinα,b=cosα,c=sinβ,d=cosβ]|abcd|=|sinα·cosα·sinβ·cosβ|=14|sin2α·sin2β|F14|sin2α|·|sin2β|F41]-14FabcdF41例2、求证:|a|+|b|1+|a|+|b|E1+|a|+a+b|b|分析:认真观察原不等式两边,不难发现它们…  相似文献   

19.
<正>函数f(x)在x=x0处的导数f'(x0)的几何意义就是函数f(x)的图象在x=x0处的切线的斜率,对凹曲线,其各点处的切线都在曲线下方.利用这个几何特性,我们可以根据不等式构造函数,利用切线法证明不等式,本文举例说明.例1正实数a,b满足a+b=1.证明:a2/(a+1)+b2/(b+1)≥13.证明构造函数f(x)=x2/(x+1),则  相似文献   

20.
《数学教学通讯》2001年第10期刊发的一篇文章[1]中利用均值不等式巧妙地证明了一类条件不等式.本文借用这篇文章中的例子进一步探讨这类条件不等式的统一背景. 例 1 已知 a,b∈R~+,a+b=1,求证: (1)a2十b2≥1/2;(2)a3十b3≥1/4. 该例中的第(1)个不等式的背景是 2(a2十b2)≥(a十b)2,①不等式(1)只不过是当a+b=1时的特殊情形.显然不等式①对任意实数a和b都是成立的,因此对不等式(1)就没有必要限制a和b为正实数. 不等式①应该说是中学数学里常见的基本不等式之一,在此没有必要给出它的证明.不  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号