首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This paper concentrates on the output tracking control problem with L1-gain performance of positive switched systems. We adopt the multiple co-positive Lyapunov functions technique and conduct the dual design of the controller and the switching signal. Through introducing a new state variable, which is not the output error, the output tracking control problem of the original system is transformed into the stabilization problem of the dynamics system of this new state. The proposed approach is still effective even the output tracking control problem of any subsystem is unsolvable. According to the state being available or not, we establish the solvability conditions of the output tracking control problem for positive switched systems, respectively. In the end, a number example demonstrates the validity of the presented results.  相似文献   

3.
4.
We consider the stability and L2-gain analysis problem for a class of switched linear systems. We study the effects of the presences of input delay and switched delay in the feedback channels of the switched linear systems with an external disturbance. By contrast with the most of the contributions available in literatures, we do not require that all the modes of the switched system are stable when input delay appears in the feedback input. By reaching a compromise among the matched-stable period, the matched-unstable period, and the unmatched period and permitting the increasing of the multiple Lyapunov functionals on all the switching times, the solvable conditions of exponential stability and weighted L2-gain are developed for the switched system under mode-dependent average dwell time scheme (MDADT). Finally, numerical examples are given to illustrate the effectiveness of the proposed theory.  相似文献   

5.
This paper investigates L2-gain analysis of power systems with delayed load frequency control schemes. Based on a new delay form, new functionals which may be more general than some existing Lyapunov-Krasovskii functionals are developed. Then, new L2-gain criteria are derived with the help of the functionals. Finally, some comparisons are made to show that the obtained criteria are effective.  相似文献   

6.
This paper presents a method for designing dynamic event-triggered controller of networked control systems (NCSs) with uncertainty and time delays. Under the condition that the Lyapunov function of the system is allowed to increase at each jump point, the globally exponentially stable (GES) of the system can be achieved by using the Riccati differential equation and the principle of average dwell time (ADT). The minimum allowable inter-event interval is obtained by limiting the increment of the Lyapunov function within the transmission interval. Both the static event triggering and no transmission delay are included in the designed dynamic event triggering mechanism as special cases. A numerical example is given to verify the correctness and validity of the proposed method.  相似文献   

7.
This paper focuses on the issue of finite-time stability for a general form of nonlinear systems subject to state-dependent delayed impulsive controller. Based on the Lyapunov theory and the impulsive control theory, sufficient conditions for finite-time stability (FTS) and finite-time contractive stability (FTCS) are obtained. Additionally, we apply theoretical results to finite-time synchronization of chaotic systems and design the effective state-dependent delayed impulsive controllers in terms of techniques of linear matrix inequality (LMI). Finally, we present two numerical examples of finite-time synchronization of cellular neural networks and Chua’s circuit to verify the effectiveness of our results.  相似文献   

8.
This paper studies stochastic impulsive systems with time delay, where the impulse times are state-dependent. Using Itô calculus, we develop the essential foundation of the theory of the mentioned system. In particular, we establish results on local and global existence, forward continuation, and uniqueness of adapted solutions.  相似文献   

9.
In this paper, we investigate an eco-epidemic model with distributed time delay and impulsive control strategy. Firstly, by using Floquet theory of impulsive differential equation, we get the condition for the local stability of the prey eradication periodic solutions. Secondly, by means of impulsive equation compare theory, we get the condition for the global asymptotical stability of the prey eradication periodic solutions. Finally we study the permanence of the system. Numerical simulations (bifurcation diagram, the largest Lyapunov exponents and power spectra) are carried out to illustrate the above theoretical analysis and the rich dynamics phenomenon, which are caused by impulsive effects and time delay, for example bifurcation, double period solution, etc.  相似文献   

10.
11.
12.
The problem of finite-time stability (FTS) for discrete-time systems with interval time-varying delay, nonlinear perturbations and parameter uncertainties is considered in this paper. In order to obtain less conservative stability criteria, a finite sum inequality with delayed states is proposed. Some sufficient conditions of FTS are derived in the form of the linear matrix inequalities (LMIs) by using Lyapunov–Krasovskii-like functional (LKLF) with power function and single/double summation terms. More precisely estimations of the upper bound of the initial value of LKLF and the lower bound of LKLF are proposed. As special cases, the FTS of nominal discrete-time systems with constant or time-varying delay is considered. The numerical examples are presented to illustrate the effectiveness of the results and their improvement over the existing literature.  相似文献   

13.
This paper presents the optimal regulator for a linear system with time delay in control input and a quadratic cost function. The optimal regulator equations are obtained using the duality principle, which is applied to the optimal filter for linear systems with time delay in observations, and then proved using the maximum principle. Performance of the obtained optimal regulator is verified in the illustrative example against the best linear regulator available for linear systems without delays. Simulation graphs and comparison tables demonstrating better performance of the obtained optimal regulator are included.  相似文献   

14.
15.
This paper is concerned with the issue of finite-time boundedness of discrete-time uncertain interval type-2 fuzzy systems with time-varying delay and external disturbances via an observer-based reliable control strategy. According to the system output variable, a full-state observer that shares the same membership functions of the plant is constructed to estimate the unknown system states. In addition, a reliable controller subject to observer states and actuator faults is designed to formulate the closed-loop feedback control system, which does not share the same membership functions of the plant. Then, by constructing an appropriate Lyapunov–Krasovskii functional and using the finite-time stability theory, a new set of delay-dependent sufficient conditions guaranteeing the finite-time boundedness of the addressed system is established in the framework of linear matrix inequalities. Furthermore, the explicit expressions of gain matrices of the state observer and the reliable controller are given in terms of the established sufficient conditions. Finally, simulation results are presented to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

16.
To expand the potential of uncertainty and disturbance estimator (UDE)-based control in practical application to most industrial stable processes, this paper proposes a convenient yet robust tuning rule according to the widely used first-order plus time delay (FOPTD) plant. The Smith predictor is first introduced to anticipate the delay-free output, which guarantees signal synchronizations in three control modules and enables remarkable restorations of nominal stability and performance. Then a second-order filter is employed in UDE to decouple the trade-off between disturbance rejection and noise attenuation. Based on this improvement and fixing both tracking speed and feedback gain to suggested patterns, the exhaustive evaluations for robustness against model distortion are executed through scanning the dimensionless filter bandwidth. The boundary demarcation triggered by the plunge of the continuous range of tolerable mismatched delays subsequently facilitates the formulation of an intuitive tuning rule with prescribed robustness. Its inherent model-based scaling property largely enables this rule to be implemented readily in industrial processes just like the proportional-integral-derivative (PID) controller. Several representative simulations are performed to demonstrate the merits of the proposed method over the related control strategies. And the promising prospect of the UDE-based control in the practical application is further illustrated by conducting a water level control experiment.  相似文献   

17.
In this paper, the problem of hybrid control strategy (HCS) for time-varying delay positive switched linear systems (PSLS) with unstable modes is studied. Firstly, the HCS, which includes minimum switching strategy and discretized state feedback controller, is applied to PSLS with time-varying delay for the first time. Secondly, by using the discretized multiple linear copositive Lyapunov-Krasovskii functional, a sufficient condition of globally uniformly asymptotically stable (GUAS) under the HCS is given. Finally, the HCS is extended to discrete-time positive switched time delay systems, and a delay independent stabilization condition is obtained in the discrete system. The effectiveness of the HCS is verified by two simulation examples.  相似文献   

18.
The robust stability problem for linear time-delay systems with general linear delayed impulses is investigated. Different from the previous results, the impulse-delays are allowed to be larger than the impulse period. An auxiliary state variable is introduced to construct an augmented model of the impulsive system, under which the discrete dynamics introduced by impulse-delays can be highlighted. A novel piecewise Lyapunov functional is introduced to analyze the stability of the augmented model. This functional is continuous along the trajectories of the augmented model, and is not required to be positive-definite at non-impulse instants. LMI-based exponential stability conditions are derived, which depend on both the impulse-dwell-time and the impulse-delay-interval. Numerical examples show that the obtained stability criteria are able to handle the benefit/harmful impulse-delays.  相似文献   

19.
20.
This paper focuses on robust adaptive sliding mode control for discrete-time state-delay systems with mismatched uncertainties and external disturbances. The uncertainties and disturbances are assumed to be norm-bounded but the bound is not necessarily known. Sufficient conditions for the existence of linear sliding surfaces are derived within the linear matrix inequalities (LMIs) framework by employing the free weighting matrices proposed in He et al. (2008) [3], by which the corresponding adaptive controller is also designed to guarantee the state variables to converge into a residual set of the origin by estimating the unknown upper bound of the uncertainties and disturbances. Also, simulation results are presented to illustrate the effectiveness of the control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号